
Humans produce several antimicrobial
peptides, including the a and b defensins
and the cathelicidin LL-37. a-defensins
HNP 1–4 are expressed by neutrophils,
and a-defensins 5 and 6 are expressed by
Paneth cells of the small intestine.
b-defensins are epithelium-derived; four
have been characterized to date. LL-37, the
only human cathelicidin, is produced by
both neutrophils and epithelium (35).
There has been great interest in using
synthetic antimicrobial peptides as an
adjunct to traditional therapies for oral
diseases (15, 30, 44), but naturally occur-
ring antimicrobial peptides likely play a

role in protection from periodontal disease
(1, 23). Severe periodontal disease is seen
in patients with morbus Kostmann, an
inherited neutrophil disorder, and is asso-
ciated with a deficiency of antimicrobial
peptides including LL-37 and a-defensins
HNP 1–4 (36).
Both epithelial- and neutrophil-derived

antimicrobial peptides from nonhuman
mammals have proven effective against
periodontal pathogens such as Porphyro-
monas gingivalis, Prevotella intermedia,
Actinobacillus actinomycetemcomitans,
Eikenella corrodens, and Capnocytophaga
spp. in vitro (27–29). Recently, b-defensins

were demonstrated to have activity against
P. gingivalis, actinomycetes, streptococci,
and Candida species (17, 25, 33).
b-defensins are found in saliva and gingi-
val crevicular fluid, and are expressed by
the oral epithelium, tongue, and salivary
glands (3, 9, 10, 12, 13, 26, 37). Human
b-defensin-1 is expressed constitutively in
gingival tissues; hbD-2 and -3 are induced
in response to some periodontal microor-
ganisms and inflammatory stimuli (18–20).
Our previous studies indicate that

Treponema denticola ATCC type strains
and strain GM-1 are resistant to hbD-1 and
-2 (6). However, there are more than 40
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Background/aims: Oral treponemes are implicated in the pathogenesis of periodontal
disease. We have previously shown that Treponema denticola ATCC type strains and
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except Treponema vincentii were resistant to hbD-1. Treponema pectinovorum was
sensitive to hbD-2, while T. vincentii, T. pectinovorum and Treponema maltophilum were
sensitive to hbD-3. Escherichia coli was used as a control organism and was killed by all
three defensins.
Conclusion: Resistance to the constitutively expressed hbD-1 may assist treponemes in
initial colonization of epithelial surfaces, while resistance to the inducible hbD-2 and -3
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additional oral treponemal species, many
uncultivated, and their sensitivities to
b-defensins have not been determined
(11). In this study we investigate the
susceptibility of additional isolates of
T. denticola and several species of oral
treponemes to hbD-1, -2, and -3.

Material and methods

Bacterial culture

T. denticola strains ATCC 35405, 35404,
33521, 33520 and GM-1 were obtained
from Pamela Braham (University of Wash-
ington, Seattle, WA) and maintained as
previously described (2). Escherichia coli
strain ML35 was obtained from ATCC
(American Type Culture Collection, Rock-
ville, MD) and maintained in Luria–Ber-
tani medium at 37�C. All other Treponema
species utilized in this study are listed in
Table 1. Treponema lecithinolyticum and
Treponema maltophilum were maintained
in OMIZ-P4 (45) with the following
additions: for T. lecithinolyticum,
100 mg/l asialofetuin, 2 g/l d-trehalose,
2 g/l l-rhamnose (Becton Dickinson
and Company, Cockeysville, MD), 2 g/l
d-sucrose; for both T. lecithinolyticum and
T. maltophilum, 1% v/v yeast extract
(Becton Dickinson and Company), 1% v/
v neopeptone (Becton Dickinson and
Company), and 1% heat-inactivated
human serum. Treponema medium, Trepo-
nema socranskii and Treponema vincentii
were maintained in NOS media as modi-
fied by Walker et al. (43). Treponema
pectinovorum was maintained in GM-1
medium supplemented with 2% v/v heat-
inactivated rabbit serum, 150 mm ACES
buffer, 0.6% w/v d-galacturonic acid and
0.75% v/v yeast extract. Because defensin
sensitivity may be affected by growth
phase, growth curves for all oral trepo-
neme species were established (data not
shown), and testing was conducted with
log phase organisms. All treponemes were
grown anaerobically. Unless otherwise
stated, all chemicals and reagents were
from the Sigma Chemical Company
(St. Louis, MO).

Defensin killing assay

Four-day log-phase cultures of Treponema
species and log-phase cultures of E. coli
were centrifuged at 10,000 · g for 10 min
at 20�C. Bacteria were washed once and
resuspended in modified chemically
defined medium (OMIZ-P4 without phe-
nol red and sugars). 1 · 108 motile trepo-
nemes/ml were added to quadruplicate
wells of a 96-well polypropylene plate

(Corning Incorporated Life Sciences,
Acton, MA) and incubated with 10 lg/ml
of hbD-1, -2 or -3 (Peprotech, Rocky Hill,
NJ) or 0.2% SDS (positive control for
killing). Previously, we determined that
T. denticola was insensitive to a range of

concentrations of hbD-1 and -2, up to
100 lg/ml (6). Motility (% motile) was
determined by dark-field microscopy.
After 4 h of incubation at 37�C and 5%
CO2, a 1/10 vol. of Alamar Blue (Bio-
source, Camarillo, CA) was added and

Table 1. Bacterial strains and sources

Bacterial species Strain Source

Treponema denticola Ambigua L. Simonson
Treponema denticola T32A L. Simonson
Treponema denticola D65BR1 L. Simonson
Treponema denticola 7 L. Simonson
Treponema medium ATCC 700293
Treponema vincentii ATCC 33580
Treponema lecithinolyticum ATCC 700332
Treponema maltophilum ATCC 51940
Treponema socranskii ssp. socranskii ATCC 35536
Treponema pectinovorum ATCC 33768
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Fig. 1. T. denticola ATCC type strains are resistant to killing by hbD-3. 1 · 108 mid-log phase
treponemes/ml were incubated with 10 lg/ml of hbD-3 for 4 h. A 1/10 vol of Alamar Blue was
added and bacteria were incubated for an additional 20 h. Reduction of Alamar Blue indicates
treponemal viability. Data represent the means (percent killing) and standard errors from four or more
experiments. Similar results were shown by motility assay. Student’s t-test assuming unequal
variances was used to determine significance; ***P<0.001.
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Fig. 2. Other T. denticola strains are resistant to killing by hbD-1, -2, and -3. 1 · 108 mid-log phase
treponemes/ml were incubated with 10 lg/ml of hbD-1, -2, or -3 for 4 h. A 1/10 vol of Alamar Blue
was added and bacteria were incubated for an additional 20 h. Reduction of Alamar Blue indicates
treponemal viability. Data represent the means (percent killing) and standard errors from four or more
experiments. Similar results were shown by motility assay. Student’s t-test assuming unequal
variances was used to determine significance of killing compared to untreated bacteria; ***P<0.001.
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bacteria were incubated for an additional
20 h. The optical density for each well was
read on a Dynatech colorimetric plate
reader at 570 and 600 nm. Percent reduc-
tion of Alamar Blue was calculated
according to manufacturer’s instructions.
Percent killing was determined by the
formula:
(% reduction in presence of peptide)/
(% reduction in absence of peptide) · 100
As a control for hbD activity, E. coli

ML35 was incubated in the same manner,
and viability was determined by plate
count. Student’s t-test assuming unequal
variances was used to determine signifi-
cance. Previously, we demonstrated that
the Alamar Blue assay for metabolic
activity correlated with both motility of
T. denticola as visualized by dark-field
microscopy, and viability as determined by
colony forming units on semisolid medium
(6). Viability as measured by Alamar Blue
reduction and treponemal motility corre-
late in both stationary and log phase
growth ((6) and data not shown).

Results

T. denticola ATCC type strains are

resistant to killing by hbD-3

Previously, we determined that T. dentico-
la type strains ATCC 35404, 35405,
33520, 33521, as well as strain GM-1,
are resistant to a range of concentrations of
hbD-1 and -2, that no killing could be
observed up to 24 h, and that resistance
was present in both stationary and mid-log
phase (6). To determine whether these
strains are also resistant to hbD-3, T. den-
ticola strains were incubated with hbD-3
and resistance was determined by motility
and Alamar Blue assay. All four ATCC
strains and strain G)1 were resistant to
hbD-3 under these assay conditions,
whereas significant killing of E. coli
occurred (P<0.001, Fig. 1). hbD-3 con-
centrations as high as 230 lg/ml had no
effect on T. denticola viability (data not
shown).

Other T. denticola strains are resistant to

killing by hbD-1, -2, and -3

To determine whether resistance to
b-defensins is common among more recent
isolates of T. denticola, clinical isolates
representing three serovars were tested for
susceptibility to hbD-1, -2, and -3. Strains
D65BR1, T32A, and 7 were resistant to
hbD-1, -2 and -3 as determined by both
Alamar Blue assay (Fig. 2) and motility
determination (data not shown). Strain
Ambigua demonstrated some susceptibil-

ity to hbD-2 and -3; whereas the level of
killing was not significantly different than
the control in the absence of peptide, it was
considerably higher than any other T. den-
ticola strains tested, on a par with the
observed E. coli killing (Fig. 2). In the
motility assay, Ambigua was significantly
killed by hbD-3 (P¼0.03, data not shown).
Data for all T. denticola strains tested are
summarized in Table 2A.

Susceptibility of oral treponemes to killing

by hbD-1, -2, and -3

Six oral treponeme species were tested in
mid-log phase for susceptibility to hbD-1,

-2, and-3. As demonstrated in Fig. 3, only
T. vincentii was killed by hbD-1 after 4 h
(P<0.05). T. pectinovorum was killed by
hbD-2 (P<0.05), while T. vincentii, T. pec-
tinovorum, and T. maltophilum were killed
by hbD-3 (P<0.01, 0.05, 0.05, respec-
tively). Many of the oral Treponema spp.
are quite fastidious and do not remain
viable in the absence of antimicrobial
peptides for longer than a few hours, so
we were unable to determine if extended
incubation in the presence of b-defensins
might demonstrate killing. Taken together,
these results suggest that most oral trepo-
nemes are resistant to hbD-1 and -2,
although three species of treponemes are

Table 2. Summary of treponemal susceptibility to hbD-1, -2, and -3

A Serovar hbD-1 hbD-2 hbD-3

35405 A – – –
7 B – – –
33521 B – – –
GM-1 B-like – – –
35404 C – – –
33520 C – – –
T32A C – – –
D65BR1 D – – –
Ambigua D – +/– +/–

B Phylogenetic
group

hbD-1 hbD-2 hbD-3

T. vincentii 1 + – +
T. medium 1 – – –
T. lecithinolyticum 4 – – –
T. maltophilum 4 – – +
T. socranskii 6 – – –
T. pectinovorum 8 +/– + +

Data are summarized from Fig. 1–3. Some of the data on T. denticola ATCC 35405, 35404, 33520,
33520, and G)1 were previously published (6). –, no killing. +, statistically significant killing
(P<0.05). +/–, killing not significant, but strong trend towards susceptibility.
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Fig. 3. Susceptibility of oral treponemes to killing by hbD-1, -2, and -3. 1 · 108 mid-log phase
treponemes/ml were incubated with 10 lg/ml of hbD-1, -2, or -3 for 4 h. A 1/10 vol of Alamar Blue
was added and bacteria were incubated for an additional 20 h. Reduction of Alamar Blue indicates
treponemal viability. Data represent the means (percent killing) and standard errors from four or more
experiments. Similar results were shown by motility assay. Student’s t-test assuming unequal
variances was used to determine significance; *P<0.05. ** P<0.01, *** P<0.001.
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sensitive to hbD-3. T. medium, T. leci-
thinolyticum, and T. socranskii were resist-
ant to all three defensins, just like
T. denticola. Data for all treponeme strains
tested are summarized in Table 2B.

Discussion

Oral treponemes are closely linked with
periodontal disease, and make up the bulk
of the microflora present in diseased sites
(21, 22). To thrive in this inflammatory
environment, oral Treponema must have
evolved mechanisms for avoiding the
host’s innate immune response. Recent
studies have elegantly demonstrated the
importance of antimicrobial peptides such
as b-defensins in vivo (7, 31, 32, 34, 38).
We have previously shown that T. denti-
cola ATCC strains 35405, 35404, 33520,
33521, and strain GM-1 are resistant to a
range of concentrations of hbD-1 and -2.
We now demonstrate that these five
T. denticola strains are also resistant to
hbD-3. Resistance to hbD 1-3 is common
both among ATCC strains and more recent
isolates. Sensitivity to a given hbD does
not appear to correlate with T. denticola
serovar, as only one of nine isolates
demonstrated any sensitivity to b-defen-
sins (Strain Ambigua, Fig. 2).
Treponema have been placed into 10

phylogenetic groups based on 16s rRNA
analysis; seven of these groups have
cultivatable members, and all groups have
representative species or clones present in
the mouth (11). We examined the sensi-
tivity of several treponema to b-defensins.
Only T. vincentii, one of seven species
tested, is sensitive to hbD-1. Only T. pec-
tinovorum is sensitive to hbD-2, and three
species tested are sensitive to hbD-3.
Interestingly, hbD-1 is the least potent
human b-defensin, while hbD-3 has the
broadest spectrum of antimicrobial activity
(16, 17, 42), which correlates with our
findings. Phylogenetic grouping did not
appear to correlate with sensitivity or
resistance: T. medium and T. vincentii are
closely related Group 1 treponemes, but
only T. vincentii demonstrates sensitivity
to hbD-1 and -3. T. maltophilum and
T. lecithinolyticum are Group 4 trepo-
nemes, but only T. maltophilum is sensi-
tive to hbD-3.
The mechanism of b-defensin antimi-

crobial activity is unclear, but may involve
membrane disruption and interference with
negatively charged macromolecules such
as DNA (14). Thus, the slow growth and
unique membrane composition of trepo-
nemes may help explain the resistance of
T. denticola and other oral treponemes to

human b-defensins. However, other spiro-
chetes have demonstrated sensitivity to
cathelicidins and neutrophil-derived defen-
sins from humans and rabbits, suggesting
another mechanism of resistance is present
(4, 5, 8, 24, 39). In addition, we have
previously demonstrated that resistance to
b-defensins is evident for T. denticola in
both stationary and mid-log phase, and no
killing was observed with incubation times
of up to 24 h; this suggests the slow
growth rate of oral treponemes is not
responsible for their resistance (6). We
have previously shown that proteolytic
activity of T. denticola is not responsible
for resistance to b-defensins (6). An
intriguing possibility for a resistance
mechanism arises from the newly comple-
ted T. denticola genome, which shows the
presence of 84 efflux pump-related genes
(40). Efflux of antimicrobial peptides has
been demonstrated to account for the
resistance of another mucosal pathogen,
Neisseria gonorrhoeae (41). We are further
exploring this mechanism in T. denticola.
In conclusion, most oral Treponema are

resistant to human b-defensins. Resistance
to the constitutively expressed hbD-1 may
enable treponemes to associate closely
with the gingival epithelium and to estab-
lish themselves early in the periodontal
lesion. Resistance to the inducible hbD-2
or -3 may dictate which treponemes are
prevalent in the inflammatory environment
of the active periodontal lesion.
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