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ABSTRACT
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the
current scope of operation of large-scale nucleotide sequence determination fa-
cilities. To date, 8 complete bacterial genomes have been sequenced, and at least
40 more will be completed in the near future. Such projects give wonderfully
detailed information concerning the structure of the organism’s genes and the
overall organization of the sequenced genomes. It will be very important to put
this incredible wealth of detail into a larger biological picture: How does this
information apply to the genomes of related genera, related species, or even other
individuals from the same species? Recent advances in pulsed-field gel elec-
trophoretic technology have facilitated the construction of complete and accurate
physical maps of bacterial chromosomes, and the many maps constructed in the
past decade have revealed unexpected and substantial differences in genome size
and organization even among closely related bacteria. This review focuses on this
recently appreciated plasticity in structure of bacterial genomes, and diversity in
genome size, replicon geometry, and chromosome number are discussed at inter-
and intraspecies levels.
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INTRODUCTION

One might consider that a full understanding of the genetic structure of a species’
genome is achieved when the complete nucleotide sequence of the genome of
a member of that species is known. Such an assumption would likely be wrong
for most bacteria. Recent findings have shown an unexpected level of structural
plasticity in many bacterial genomes. Even among the genomes of different
individuals belonging to the same species there may be very substantial dif-
ferences. This review explores the structural diversity and “fluidity” of the
(eu)bacterial genome, and attempts to delineate the known ways in which indi-
viduals differ within species and ways in which related species differ from one
another. Archaeal genomes are not covered. This discussion is aimed at a broad
readership, which necessitates omitting interesting details, but the reader should
garner aflavor of our current knowledge [additional details can be found in other
reviews of this topic (25, 52, 128, 130) and the various informative chapters in
(60)].

The structure of bacterial genomic DNAs can be analyzed at many levels,
including nucleotide nearest neighbor and oligonucleotide frequencie€, G
content, GC skew, nucleotide sequence, gene organization, overall size, and
replicon geometry. This discussion focuses on the overall size and geometry
and the diversity in these parameters for bacterial genomes. The recent rapid
expansion of knowledge of bacterial genome structure is largely due to ad-
vances in pulsed-field gel electrophoretic technology, which allows separation
of large DNA molecules. This technology, which has made the measurement of
bacterial genome size and construction of physical (macro-restriction enzyme
cleavage site) maps of bacterial chromosomes relatively straightforward and
much more accurate than previous methods, has been amply reviewed else-
where (52,60, 77, 226) and is not discussed here.

The new field of bacterial genomics, the study and comparison of whole bac-
terial genomes, is blossoming and will continue to expand during the coming
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decade, as many complete bacterial genome sequences are determined. The
complete sequences of eight bacterial genomes are published at this writing.
The individual bacteria whose genomes have been sequenced are members
of the following speciesHaemophilus influenza@5s), Mycoplasma genital-

ium (81), Mycoplasma pneumonig&01), Synechocystisp. PCC6803 (121),
Helicobacter pylori(246), Escherichia coli(17), Bacillus subtilis(133), and
Borrelia burgdorferi(80). Over 40 additional complete bacterial genome se-
quences are anticipated within a few years (the World Wide Web site at The
Institute for Genomic Research maintains a current listing and status of bacterial
genome sequencing projects; http://www.tigr.org/tdb/mdb/mdb.html).

To understand themes and variations on those themes in bacterial genome
structure, this new knowledge must be placed in the context of the bacte-
rial phylogenetic tree. Modern bacterial phylogenetic classification is based
mainly on nucleotide sequence comparisons, with rRNA sequence compar-
isons the most useful for relating distant phyla (110, 261). This tree probably
does not accurately describe the phylogenetic relationships of many bacterial
genes [e.g. horizontal transfer and perhaps even genome fusion events may
have occurred (22,91, 138, 170)], and, although still incomplete and subject to
controversy, the rRNA tree provides an initial framework for discussion and
shows that there are currently 23 named major bacterial phylogenetic divisions
[and probably at least as many unstudied ones (110)]. Figure 1 presents a di-
agrammatic version of the bacterial rRNA phylogenetic tree. Because bacteria
have limited variation in physical shape and size, we need to be reminded
that the branches of their phylogenetic tree are deep and separated by im-
mense time spans, as great or greater than those separating the deep eukaryotic
branches (e.g. fungi and vertebrates). Thus, although the bacteria form a self-
consistent clade of organisms, substantial differences may well be found among
them.

Large DNA replicons are here referred to as chromosomes and smaller ones
as either extrachromosomal elements, plasmids, or small chromosomes, as ap-
propriate in each circumstance. However, the definitions of these terms have
become fuzzy as new paradigms have emerged. Currently, the de facto defi-
nition of a chromosome is as a carrier of housekeeping genes, but even if a
replicon is dispensable under some laboratory conditions, its universal pres-
ence in natural isolates might suggest that it is essential in the real habitat of
the organism. Should we call smaller DNA elements of the latter type plas-
mids or small chromosomes? And should elements that are essential in par-
ticular situations be called dispensable chromosomes? New terminology, and
certainly additional information about the nature of particular replicons, may
be required for accurate discussion and complete understanding of all these
elements.
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BACTERIAL CHROMOSOME SIZE, GEOMETRY,
NUMBER, AND PLOIDY

Chromosome Size

Bacterial genome sizes can differ over a greater than tenfold range. The small-
est known genome is that Mycoplasma genitaliumat 580 kbp (81) and the
largest known genome is that bfyxococcus xanthugt 9200 kbp (99). The
median size is near 2000 kbp for those studied to date (225), although this
value is likely skewed toward the genome sizes of the more frequently studied
pathogenic bacteria. Figure 2 compares this range in genome size to those of
members of the other kingdoms of life. It overlaps the largest viruses [bac-
teriophage G—670 kbp (222)] and the smallest eukaryotes (the microsporidia
protozoanSpraguea lophit-haploid 6200 kbp (13, but see also 89)]. The
average bacterial gene size in the completely sequenced bacterial genomes
is uniform so far, at 900 to 1000 bp, and genes appear to be similarly closely
packed in these sequences90% of the DNA encodes protein and stable
RNA). Thus, larger bacterial genomes have commensurately more genes than
smaller ones have. Gene number appears to reflect lifestyle; Bacteria with
smaller genomes (down t8470 genes iM. genitaliun) are specialists, such
as obligate parasites that grow only within living hosts or under other very
specialized conditions, and those with larger genomes (up to nearly 10,000
genes inM. xanthu$ are metabolic generalists and/or undergo some form of
development such as sporulation, mycelium formation, etc [see (225) for a more
thorough discussion].

Even within a genus, bacterial chromosome size can be surprisingly variable
(Figure 1, Table 1 and references therein). For example, different spirochete

Figure 1 Bacterial chromosome size and geometry. An unrooted rRNA phylogenetic tree con-
taining the 23 named major bacterial phyla and some of their relevant subgroups [from Hugenholtz
etal (110) and the NCBI Taxonomy web site (http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy)];

at least 12 additional, as yet unstudied major phyla exist (110). The branch lengths are not meant
to indicate actual phylogenetic distances, andfithéeaf in the center indicates a part of the phy-
logenetic tree where branching order is less firmly established. Chromosome geometry (circular
or linear) is indicated by symbols near the ends of the branch linekiple circleson thea andg
proteobacteria and a spirochete branch indicate that some members of these groups have multiple
circular chromosomes. At the end of each branch, representative genera (or higher group names)
are given with their known range of chromosome sizes in kbp; if no value is given, none has been
determined from that group. Above each namelilaek andgray circlesindicate the number of
genome sequencing projects completed and under way, respectively, for that group in early 1998.
Small circular extrachromosomal elements (plasmids) have been found in nearly all bacterial phyla,
but linear extrachromosomal elements (indicateevhite square®elow the groups in which they

have been found) are rare except in B@reliasandActinomycetesvhere they are common.

For a color version of this figure, see the color section at the back of the volume.
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Figure 2 Known genome size ranges for extant life forms on Earth. The range of genome sizes
is shown for viruses and the three kingdoms of cellular life forms. The smaller outliers in the virus
and eucarya groups are viroids and green algal endosymbionts (89), respectiveifhatimgin

the bacterial range reflects the fact that the largest fraction of known bacterial genomes are in the
1-3 mbp range. Figure was modified from Figure 1 of Shimkets (225).

treponemes can vary nearly threefold in chromosome sizeTitaponema
pallidum chromosome is 1040 kbp in length (252), whereas thak.afen-
ticolais 3000 kbp (162)] and the firmicute mycoplasmas vary at least 2.3-fold
(M. genitalium 580 kbp, toM. mycoides1350 kbp). Perhaps more typical are
the gener&Streptomyceand Rickettsia which vary from 6400 to 8200 and
1200 to 1700 kbp, respectively. Such variation, although apparently typical, is
not universal, since in the teBorrelia species studied in detail, the chromo-
somes vary less than 15 kbp in size (38, 189); these bacteria may restrict this
type of variation to the many plasmids they harbor (see below). Too few species
have been studied in most genera and even in many higher phylogenetic groups
to give us even a minimal understanding of natural variation in genome size in
most groups.

Very large variations in chromosome size within higher phylogenetic divi-
sions appears to be the rule rather than the exception (e.g. proteobacteria, 1200
to 9400 kbp; firmicutes, 580 kbp to 8200 kbp; spirochetes, 910 to 4600 kbp).
There is also significant variation in size within many species, as is discussed
below. Inspection of the chromosome sizes in Figure 1 and Table 1 shows
that genome size is diverse in bacteria, and it seems simplest to imagine that
much of this variation in genome size has arisen by rapid gene loss when a
species finds happiness in a very specific niche. However, recent discoveries of
horizontal genetic transfer among bacteria phyla (see below) make significant
increases in genome size also seem plausible. At present, less than half of the
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Tablel Physical analysisof bacterial chromosomes: size, geometry, and number

Major divisiont

Subphyla
Species Size (kbp)2 Geometry®  References
Aquificaes
Aquifex pyrophilus 1600 C 224
Chlamydiae
Chlamydia trachomatis 1045 C 16
Cyanobacteria
Anabena sp. PCC7120 6400 C 3
Synechococcus sp. PCC6301 2700 C 120
Synechococcus sp. PCC7002 2700 C 46
Synechocystis sp. PCC6803 3573 C 121
Fibrobacter
Fibrobacter succinogenes 3600 C 188
Firmicutes
Low G+C group
Acholeplasma hippikon 1540 ct 180
Acholeplasma laidlawii [2] 15801650 ct 180, 204
Acholeplasma oculi 1630 C 244
Bacillus cereus[10] 2400-6270 CI[5] 28, 30, 32
Bacillus megaterium 4670 — 249
Bacillus subtilis [2] 4200 CI[2] 112,113
Bacillus thuringiensis [2] 5400-5700 Cl[2] 34-36
Carnobacterium divergens 3200 — 56
Clostridium beijerinckii [2] 4150-6700 C 258
Clostridium perfringens[8] 3650 C[8] 27,28, 123
Clostridium [5 additional species] 2500-4000 — 148, 267
Enterococcus faecalis 2825 C 177
Lactobacillus [4 species] 1800-3400 — 57,58
Lactococcus acidophilus 1900 C 212
Lactococcus helveticus [3] 1850-2000 — 158
Lactococcus lactis [20] 2100-3100 C[5] 57, 58, 139,
140, 247
Listeria monocytogenes [37] 2300-3150 CI[2] 37,100, 175
Leuconostoc [4 species] 1750-2170 — 242
Mycoplasma sp. PG50 1040 C 199
Mycoplasma [12 species] 735-1300 ct 180
Mycoplasma capricolum 800 C 176, 257
Mycoplasma flocculare 890 — 204
Mycoplasma gallisepticum [3] 1000-1050 C[3] 92, 243
Mycoplasma genitalium 580 C 194
Mycoplasma hominis[5] 700-770[5] C 135
Mycoplasma hyopneumoniae 1070 — 204
Mycoplasma mobile 780 C 9
Mycoplasma mycoides [6] 1200-1350 C[5] 180, 198, 199

(Continued)
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Tablel (Continued)

Major division®

Subphyla
Species Size (kbp)? Geometry®  References
Mycoplasma pneumoniae 800-840 C 255, 256
Mycoplasma-like organisms [11]  575-1185° — 179
Western X -disease agent 670 C 73
QOeoncoccus oeni [41] 1780-2100 — 136, 242
Pediococcus acidilactici [2] 18602130 — 159
Spiroplasma citri 1780 C 266
Forioplasma [20 species) 940-2200 — 29
Saphylococcus aureus [2] 2750 C 4
Streptococcus caronsus 2590 C 251
Streptococcus thermophilis [3] 18241865 C[3] 211
Streptococcus mutans 2100 C 97, 269
Streptococcus pneunomiae 2270 C 87
Streptococcus pyogenes 1920 C 233
Ureaplasma diversum [3] 1100-1160 — 119
Ureaplasma urealyticum [16] 760-1140 C 51, 204
Ureaplasma [7 species] 760-1170 — 119
Actinomycetes
Bifidobacterium [8 species] 16002000 — 185
Brevibacterium lactofermentum 3050 — 53
Corynebacteria glutamicum 2990 — 53
Micrococcus sp. Y-1 4010 C 192
Mycobacterium leprae 2800 — 70
Mycobacterium bovis 4350 C 195
Mycobacterium tuberculosis 4400 — 196
Rhodococcus facians 4000 L4 54
Rhodococcus sp. R312 6400 — 14
Sreptomyces ambofaciens [4] 6420-8150 L 11, 141, 142
Streptomyces coelicolor 7900 L 125, 201, 248
Streptomyces griseus 7800 L 147
Sreptomyces lividans 8000 L 143, 149
Fusobacteria
Fusobacterium nucleatum [6] 2400 — 18
Green sulfur bacteriaand Cytophagales
Chlorobium limnicola [2] 2460-2650 — 171
Chlorobium tepidum 2150 C 178
Bacteriodes [7 species) 4800-5300 — 223
Planctomycetes and relatives
Planctomyces limnophilus 5200 C 254
Proteobacteria
« group
Agrobacterium tumefaciens 3000 & 2100 C&L 1,116
Bartonella bacilliformis 1600 C 131

(Continued)
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Major division®

Subphyla
Species Size (kbp)? Geometry®  References
Bradyrhizobium japonicum[2] 6200-8700 C 132, 227
Brucella abortus 2050 & 1100 C 174
Brucella suis[3] 3200, 2000 & 1150, C[3] 117,174
1850 & 1350
Brucella canis 2150 & 1170 C 174
Brucella ovis 2030 & 1150 C 174
Brucella neotomae 2050 & 1170 C 174
Brucella melitensis 2050 & 1130 C 116, 173
Caulobacter crescentus 4000 C 71
Rhizobium meliloti 3450, 1700 & 1340 C 109
Rhodobacter capsulatus 3800 C 76, 78,79
Rhodobacter sphaeroides 3050 & 914 C 48, 49, 234
Rickettsia bellii 1660 — 213
Rickettsia melolanthae 1720 — 82
Rickettsia rickettsii 1270 — 213
Rickettsias [14 species] 1220-1400 — 213
Zymomonas mobilis 2080 C 71
B group
Bordetella pertussis [5] 37504020 CI[5] 229, 230
Bordetella parapertussis 4780 C 230
Burkholderia cepacia 17616 3400, 2500 & 900 C 47
Burkholderia cepacia 25416 3650, 3170 & 1070 C 205
Burkholderia cepacia [10] 4600-8100° — 145
Burkholderia glumae 3800, 3000 ct 205
Neisseria gonorrhoeae [2] 2200-2330 C[2] 15, 62, 63
Neisseria meningitidis [2] 2200-2300 C[2] 10, 64, 85
Thiobacillus ferrooxidans 2900 C 111
Thiobacillus cuprinus 3800 C 169
Y group
Acinetobacter sp. ADP1 3780 C 93
Alteromonas nigrifaciens 2040 — 235
Alteromonas sp. M-1 2240 — 235
Azotobacter vinelandii 4700 — 165
Dichelobacter nodosus 1540 C 134
Escherichia coli [15] 4600-5300 C 12,193
Haemophilus ducreyi 1760 C 106
Haemophilus influenzae [2] 1980-2100 C[2] 24,144
Haemophilus parainfluenza 2340 C 124
Proteus mirabilis 4200 — 2
Salmonella enteritidis 4600 C 152
Salmonella paratyphi 4600-4660 C 155
Salmonella typhi [2] 4780 C 124, 156, 157
Salmonella typhimurium 4700 C 153

(Continued)
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Tablel (Continued)

Major divisiont

Subphyla
Species Size(kbp)2  Geometry® References

Shewanella putrefaciens 2380 — 235
Shigella flexnerii [2] 4600 C 190
Vibrio cholerae 3200 C 164
Yersinia pestis 4400 — 160
Yersinia ruckeri 4600 — 206

¥* group
Chromatium vinosum 3670 C 86
Moraxella catarrhalis 1940 C 84
Pseudomonas aeruginosa [23] 5900-6600 C[23] 108, 207-210,

219

Pseudomonas fluorescens 6630 C 200
Pseudomonas putida 3610-5960 C 50, 107
Pseudomonas solanacearum 5550 C 107
Pseudomonas stutzeri [20] 30604640 C 50, 90
Pseudomonas syringae 5640 C 61

§ group
Desulfovibrio desulfuricans 3100 — 65
Desulfovibrio propionicus 3600 — 65
Desulfovibrio vulgaris 3700 — 65
Myxococcus xanthus 9200 C 99
Sigmatella aurantiaca [11] 9200-9900 C 181, 182
Sigmatella erecta [2] 9800 — 181

& group
Campylobacter coli 1690 C 241, 265
Campylobacter fetus[3] 1300-2120 CI[3] 43, 83, 216, 217
Campylobacter jejuni [4] 1720 C[4] 20, 43, 122, 126,

183, 184, 241
Camplyobacter laridis 1470 — 43
Campylobacter upsaliensis 2000 C 20
Helicobacter mustelae [15 isolates] 1700 — 239
Helicobacter pylori [5] 1670-1740 CI[5] 23, 115, 240
Radioresistant micrococci and relatives
Deinococcus radiodurans 3580 — 94
Thermus thermophilus[2] 1740-1820 Cl[2] 19, 237
Spirochetes

Borrelia afzelii [3] 910 L [3] 38, 189
Borrelia andersonii [2] 910 L [2] 38
Borrelia burgdorferi [7] 910-925 L [7] 38,41, 59
Borrelia garinii [3] 910 L [3] 38, 189
Borrelia hermsii 950 L4 127
Borrelia japonica [2] 910-930 L [2] 38
Borrelias [5 additional species] 910-920 L [5] 38
Borrelias [4 additional species] 900-950 L4 41

(Continued)
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Tablel (Continued)

Major divisiont

Subphyla
Species Size (kbp)? Geometry® References
Leptospira interrogans [2] 4500 & 350 Cl[2] 7,270, 271
Serpulina hyodysenteria 3200 C 272
Spirochaeta aurantia ~3000 ct 72
Treponema denticola 3000 C 162
Treponema pallidum 1080 C 252

IPhylogenetic grouping is as described in the legend to Figure 1. Numbers in square brackets
after name are the number of isolates whose genome size has been measured if it is >1.

20nly thosesizesareincluded that have been determined directly by pulsed-field gel electrophoretic
size measurement of whole DNA or asmall number of fragments.

3L, linear map; C, circular map; —, not determined. Square brackets in “Geometry” column
indicate the number of isolates for which physical maps have been constructed if that number
is greater than 1. In those cases where no map has been constructed the number of replicons
that gave rise to the DNA fragments that were summed to calculate genome size is generally not
known.

“Chromosomes thought to be linear or circular from behavior in pulsed-field electrophoresis gels
(linear molecules enter gel, while similarly sized circles do not). No map has been constructed.

5Some findings suggest multiple chromosomes may be present in some of these non-culturable
mycoplasma-like plant pathogens.

BAll Burkholderia cepacia appear to have 2 to 4 >1000-kbp replicons.

“characterized” major bacterial phylogenetic divisions have been analyzed for
genome size and geometry (Figure 1).

Replicon Geometry

Until recently, all bacterial replicons were assumed to be circular. Although
this rule is true for most bacteria, increasing numbers of exceptions are being
identified. The known geometries of bacterial chromosomes are summarized
in Figure 1 and Table 1. In the early 1990s, two bacterial genera, the spirochete
Borreliasand the actinomycetgtreptomyceswere proven to have linear chro-
mosomes (41, 45,59, 149), and to date all species studied in these two genera
have this chromosome geometry, althoughS$keptomycemay naturally in-
terchange between linear and circular (250). Both genera also commonly carry
linear plasmids. Other studied members of the spirochete gfivapgnemas
Leptospirasand aSerpuling have circular chromosomes, and genera related
to Streptomycealso have circular chromosomedifrococcusandMycobac-
terium; however, the actinomycetehodococcus faciansas been suggested

to have a linear chromosome (54)]. Furthermore, the proteobacterial species
Agrobacterium tumefacieris reported to have a 2100-kbp linear replicon in
addition to a 3000-kbp circular replicon (1, 116). Finally, rare linear plasmids
have been described in the proteobact€hmbacillus(260),Klebsiella(231),
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andEscherichia(236). That two different types of replicon linearity exist lo-
cally on the bacterial phylogenetic tree strongly suggests that linearity arose at
least twice from circular progenitors; however, we have no experimental indi-
cation as yet of what advantage may have been gained by becoming linear in
these cases.

The structures of the telomeres of linear replicons have been studied only
in Borrelia, Escherichia and Streptomycesand they take two very different
forms. TheBorrelia replicon ends are covalently closed hairpins, where one
DNA strand loops around and becomes the other strand (42,103,104). This
type of telomere is rare in cellular organisms. TBwrelias carry many lin-
ear extrachromosomal elements, which also have this type of terminal struc-
ture. Only one other bacterial replicon is known to have this type of telomere,
the linear N15 prophage plasmidi©fcoli (166), and some eukaryotic organelle
DNAs have at least one hairpin end (105). Bwrelia linear DNAs and the
N15 plasmid have 20- to 30-bp inverted sequence repeats at the two ends, but
in neither case is it understood how the telomeres are replicated (26, 42, 167).
The Streptomycetelomere DNASs, on the other hand, are open ended and have
specific proteins covalently attached to thefds; these proteins are thought to
have primed terminal replication (45, 215). Many linear plasmids with this type
of telomere have been described in Bieeptomyceand other actinomycete
genera (see 45, 215). Lin et al (149) used an insertion vector to circularize the
S. lividanschromosome, and Ferdows et al (72) found a naturally occurring,
circularized version of 8orrelia linear plasmid, indicating that linearity is not
required for their replication in culture.

Chromosome Number

Most bacteria have a single large chromosome (Figure 1; Table 1). In addition,
extrachromosomal DNA elements (plasmids) can be found in many if not all
species. Plasmids are not universally present (isolates exist that carry no extra-
chromosomal elements), but they can be very commorrelias for example,
appear to always carry multiple small replicons (see below). Extrachromosomal
elements have been documented in virtually all genera examined to date.
However, members of several bacterial genera have recently been found
to contain two or three large replicons (chromosomes) greater than several
hundred kilobase pairs: theproteobacterial generagrobacterium(1, 116),
Brucella(116, 117, 173)Rhizobium(109), andRhodobacte(49, 234), the3-
proteobacterial genuBurkholderia(47, 145, 205), some isolates of the firmi-
cuteBacillus thuringiensi¢35), and the spirochete genlusptospira(271). In
at least twoBrucellaandBurkholderig current analyses are sufficient to ten-
tatively conclude that multiple chromosomes are a stable property of the genus
(Table 1). In particular, six species Bfucellaeach have two chromosomes of
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about 2100 and 1200 kbp (174) (but see below), each carrying hybridization
targets of important housekeeping genes. Bheereughuringiensiscomplex
represents a different paradigm; in the isolates analyzed, four have a single chro-
mosome in the 5500- to 6300-kbp size range, whereas another has a 2400-kbp
chromosome (30-32, 34). In the latter isolate, a number of probes that hy-
bridized with the chromosomes of the other isolates hybridized with large ex-
trachromosomal DNA. Ribosomal RNA genes were found only on the 2400-kbp
replicon, but some housekeeping gene hybridization targets were found on the
extrachromosomal DNAs. IRhodobacter sphaeroideboth the 3000- and
900-kbp replicons appear to carry important housekeeping gen&grabac-

terium tumefaciendoth large replicons carry rRNA genes; in two isolates of
Burkholderia cepacigall three large replicons carried rRNA genes, and in two
isolates ol_eptospira interroganghe 4500-kbp replicon carries most essential
genes, but the hybridization target for a gene thought to be essential in cell wall
synthesis lies on the 350-kbp replicon. Thus, in all these cases, important genes
are found on all large replicons, justifying the moniker chromosome.

By contrast, inBorrelia and Rhizobiumextrachromosomal elements are
found that are always present, and are essential for their lifestyles in the wild,
but which carry no genes essential for growth in cultureRiizobium meliloti
all three rRNA operons lie on the 3400-kbp replicon, whereas the 1400- and
1700-kbp replicons appear to carry genes required for plant symbiBsis.
relia harbors the largest number of extrachromosomal elements yet found in
bacteria, and all natural isolates carry multiple linear DNAs in the 5- to 180-kbp
size range and several circular plasmids (8 to 60 kbp) (see 5, 263). In only one
isolate, the type strain B31, has the complete complement of extrachromosomal
elements been delineated; it carries 12 linear and 9 circular replicons between
5 and 54 kbp in size (80; S Casjens, WM Huang, G Sutton, N Palmer, R van
Vugt, B Stevenson, P Rosa, R Lathdg& C Fraser, unpublished data). Its
complete genome sequence is known, and only a small number of plasmid-
encoded geneguaA and guaB whose products convert IMP to GMP, and
several transporter genes, appear to be potentially metabolically or structurally
critical for life as a cell (80, 168). Nearly all of these DNA elements can be
lost without affecting growth in culture (214). Some, and possibly most of
these plasmids are required for the complex, but very specialized, life in which
it obligatorily exists alternately inside arthropods and vertebrates (220, 264).
Several of these extrachromosomal elements are present in all natural isolates
examined, and where they have been analyzed, they have the same gene order in
all isolates (167, 245). Their required presence for successful parasitization of
their obligate hosts indicates their importance in real life (220, 264), and it has
been persuasively argued that they should be considered mini-chromosomes

(6).
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Once again, the localized presence of multiple chromosomes in the phyloge-
netic tree suggests they have independently arisen from single chromosomes a
number of times, but their advantage remains a mystery. Interestingly, Itaya &
Tanaka (114) have recently divided the single, circB8acillus subtilischro-
mosome into two circular large parts that appear to function well independently.

Chromosome Copy Number

The characterization of bacteria as haploid is an oversimplification. In ex-
ponential growth phase, bacteria, especially fast-growing bacteria, contain on
average four or more times as many copies of sequences near the origin as
near the terminus of replication, and in a few cases, particular species have
been observed to carry more than one complete copy of their chromosome per
cell. Three such cases afeotobacter vinelandiiDeinococcus radiodurans

and Borrelia hermsii  Studies ofA. vinelandiiindicate that in rich medium

at late exponential phase, it exhibits a large increase in chromosomes per cell
(165), but the function of this increase is unknowR. radiodurans an ex-
tremely radiation-resistant bacterium, appears to have about four copies of its
chromosome in stationary phase, which can homologously recombine to regen-
erate an intact chromosome after severe radiation damage (55). Chromosome
copy number measurements frhermsiiindicated that during growth phase

in mice it contains 13-18 copies of its genome, and it has been hypothesized
that this could allow nonreciprocal recombination among plasmids during the
cassette replacement mechanism that generates diversity in expression of its
major outer-surface protein (127) (see below). Finally, the streptomycetes are
partially diploid in that they carry large 24- to 550-kbp inverted terminal dupli-
cations on their linear chromosomes. Housekeeping genes have not been found
in the duplicated regions (250). Plasmids found in natural bacterial isolates
typically have low copy number, close to that of the chromosome, but this is
not reviewed here.

GENE CLUSTERING, ORIENTATION,
AND LACK OF OVERALL GENOME SYNTENY

The construction of detailed genetic map$otoliandB. subtilisfirst indica-

ted that overall gene order in bacteria is fluid over long evolutionary time
spans. There is little similarity in overall gene order (synteny) among the dif-
ferent major phyla. For example, Figure 3 indicates the lack of overall co-
linearity in gene order even between two proteobactétfiainfluenzaeand

H. pylori(see also Figure 1 in Reference 128 and Figure 3 in Reference 238). No
compelling rationales for overall bacterial gene orders have been devised, al-
though genes near the origin of replication will be present in a higher copy
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Figure 3 Lack of conservation of gene order betweémemophilus influenzaendHelicobacter

pylori. Linearized chromosomes &f. influenzaeandH. pylori are plotted on the horizontal and
vertical axes, respectively, beginning with position one as defined in Fleischmann et al (75) and
Tomb et al (246). EacHotindicates the intersection of perpendicular lines from the positions of
orthologous genes in the two genomes. Genes in similar operons, which do exist, are too close
together to give separated points on the scale used. Data for this figure were compiled by O White
(personal communication).

number than those near the terminus during times when chromosomes are be-
ing duplicated, and superhelical densities could vary systematically across chro-
mosomes. Analysis of additional complete genome sequences should help in
answering this question. On the other hand, gene orientation is often more
regular. The chromosomes bf. genitalium B. subtilis andB. burgdorferj

for example, have 85%, 75%, and 66% of their genes, respectively, oriented
so that the (putative) origins of replication program replication forks to pass
over them in the same direction as transcription. However, the chromosome of
E. colihas a lower fraction of genes oriented in this manner (55%) (17). The
preferred orientation of the first three chromosomes above is speculated to
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minimize head-on collisions between replication and transcription complexes
(151).

In contrast to the lack of conservation of overall gene order, cognate operons
often, but not always, have similar arrangements in distantly related species,
i.e. genes that work together appear to stay together, for extremely long time
spans. Examples of parallel operon structure in different phyla are too numerous
to list here, but macromolecular synthesis gene clusters are highly conserved
across all bacteria; two examples suffice. The universally prebexAgene
encodes the protein that recruits the DNA replication apparatus to the origin of
replication. It has convincing orthologs in all bacteria where adequate searches
have been performed. There are notable exceptions, but a striking observation is
that the genednaA dnaN(DNA polymerase subunitlyrB (DNA gyrase sub-
unit), andrpmH (ribosomal protein) are usually found in immediate proximity
to one another (187,191). Likewise, similar ribosomal protein gene clusters
are present in such distantly related bacteria as the proteobacteria, spirochetes,
and firmicutes (232). Why should this be the case, given the apparent evolu-
tionary mobility of DNA regions relative to one another? Ease of advantageous
co-regulation could be a factor, but even where genes have stayed together,
regulatory mechanisms have sometimes changed; for example the very similar
E. coliandB. subtilistryptophan operons have different regulatory mechanisms
(172). And genes in an operon whose structure is conserved in some species
can be properly regulated as dispersed genes in other species. Two nonmutually
exclusive hypotheses to explain the fact that gene clusters often remain intact
are that &) horizontal transfer between lineages drives the clustering of genes
whose products work together, since the transferred DNA is more likely to sur-
vive to fixation in the recipient species if it contains all the genes necessary to
perform an advantageous biochemical task (138), Bnclstering minimizes
the formation of inactive hybrids that might form as a result of horizontal trans-
fer, e.g. in which two different genetic specificities that must work together
cannot do so, such as a regulatory protein and its operator or two interacting
proteins (40, 74).

SIMILARITIES AND DIFFERENCES IN GENOME
STRUCTURE BETWEEN CLOSELY RELATED SPECIES

The detailed genetic maps of tBe coliandSalmonella typhimuriurahromo-

somes revealed that these two species have largely similar gene orders (see
154,218), and physical mapping of these species and their close relatives
S. enteriditisand S. paratyphishowed that they also have similar gene con-
tents and orders (17, 152, 158almonellaandEscherichiaare closely related
genera in the enterobacteria group, which are thought to have separated about
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140 MYA (186). This apparent genome stability may have led to a narrow
(incorrect?) view that considers bacterial genome structure in general to be sta-
ble over evolutionary times. More recently, significant differences in genome
structure have been found in a number of closely related species. Table 2 sum-
marizes some of the currently available information in this area (see references
in Table 1). Many, but not all, intermediate level bacterial phyla (genera and
sibling genera) display substantial internal differences in overall gene content

Table 2 Genome structure relationships among some closely related species

Group
Genus Physical map comparisons

« Proteobacteria
Brucella B. abortusias a 640-kbp inversion relative to five other species.
In addition, the two chromosomes appear to be fused in at least
one isolate oB. suis
Rhodobacter Substantial differences in gene order exist betwRecapsulatus
which has one chromosome, aRdsphaeroidgsvhich has two

B Proteobacteria

Bordetella B. pertussiandB. parapertussifiave little conservation of gene
order at present resolution
Neisseria N. menigitidiandN. gonorrhoeadave some similarity in

gene order but also have complex rearrangements relative to
one another

y Proteobacteria
Salmonella& E. coli, S. typhimuriumandS. paratyphhave similar overall
Escherichia gene orders anfl. typhiis variable (see text)

¢ Proteobacteria
Campylobacter C. jejurandC. upsalensigppear to have rather similar gene

orders
Firmicutes
Bacillus Gene orders iB. subtilisandB. cereusare rather different
Clostridium Maps ofC. perfringensaandC. beijerinckiichromosomes are of
very different size, and gene order is not identical
Mycoplasma M. genitaliurandM. pneumoniadave large rearranged segments
relative to one another (see text)
Streptomyces S. lividamsdS. coelicolothave similar gene orders despite
little apparent conservation of restriction sites
Cyanobacteria

Synechococcus  Synechococsps. PCC6301 and PCC7002 have similar
chromosome sizes, but do not appear to have highly conserved
gene orders

Spirochetes
Borrelia Little detectable variation in chromosome size or gene order in
ten closely related species (multiple isolates from each species)




356 CASJENS

and arrangement, and numerous examples of such differences between closely
related species, or even within species, are now known. Given this complexity,
when only one individual from a particular species is shown to be different from
other related species (eBrucellain Table 2), it is not clear whether this rep-
resents an isolated event or a systematic difference in that species. Given the
surprisingly high level of large-scale differences in genome structure among
closely related bacteria, detailed analysis of multiple independent isolates is
essential to draw firm conclusions about genome structure relationships. Such
overall genome structure differences have not yet been incorporated into tax-
onomic classification schemes, and in some cases, they may be pointing out
areas in need of taxomonic re-evaluation.

The very low resolution of most bacterial chromosome physical and genetic
maps makes it premature to draw detailed conclusions about the exact nature of
most of the observed structural genome differences. However, a very detailed
comparison can be made between the 580-kbp chromosoMegdnitalium
and the 816-kbp chromosome M. pneumoniagthe only pair of close rela-
tives with completely sequenced genomes. Himmelreich et al (102) compared
these two genomes in detail (summarized in Figue Zhere has been consid-
erable change in genome structure since the two species diverged—both dele-
tions/insertions and other rearrangements are required to convert the gene order
of one into that of the other; the chromosome can be viewed as six segments
whose order, but not orientation, has been shuffled between the two species.
Interestingly, directly repeated sequences, called MgPa sequences, between the
six moveable sections may have mediated the rearrangements. An ortholog of
every gene itM. genitaliumis found inM. pneumoniagsuggesting that the for-
mer may have arisen though a set of deletions and segment re-ordering events
from aM. pneumoniaelike precursor; such presumed deletions have occurred
in each of the six segments shown in Figufe 4

Figure4 Large differencesin genome structure among species within a genus and within a species.
A. Relationship betweed. pneumoniaandM. genitalium Thedifferent shadegepresent different
genomic segments, and tbpen trianglesndicate the locations of the repeated MgPa sequence
(102). Each of thé/. genitaliumsegments also contains deletions relativieitpneumoniagafter
Reference 102)B. Rearrangements among individuals within the speS&monella typhi The

first five lines represent 5 of the 17 obsen&dyphigenome arrangements. THiferent shades
represent different genomic segments, andcthsed trianglesndicate the locations of the seven
rRNA operons. The genomes of three related species of bacteria are shown below. On the right of
theS. typhilines, the number of individuals (among 127 analyzed) with that arrangement is given.
Strain names are given to the right of the bottom three lines. All the chromosomes are opened
for linearization approximately at the replication terminus; the origin of replication is ikt
segmentafter Reference 157).

For a color version of this figure, see the color section at the back of the volume.
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INTRA-SPECIES VARIATION IN GENOME STRUCTURE

Differences in Overall Genome Arrangement

Even more surprising than macrogenomic differences between closely related
species are recentfindings of substantial genome differences among independent
natural isolates of the same species. The best-studied species with this property
is Salmonella typhiin which there appear to be substantial ongoing chromo-
somal rearrangements mediated through homologous recombination among
the seven rRNA operons (Figur®&) Liu & Sanderson (157) found 17 of the

21 possible inter-rRNA genome segment orders among 127 independent iso-
lates examined, suggesting that many segment shuffling recombination events
have occurred in nature that are not strongly selected against. Curiously, the
analyzed members of the several closely related species with very similar
genomic contentS. paratyphiB (1 isolate),S. typhimurium(50 isolates),

S. enteriditis(1 isolate), ancE. coli, all have the segment arrangement cor-
responding to one found only twice among the 27yphiisolates studied
(157). Brucellaisolates typically have two chromosomes of about 1200 and
2100 kbp (174), but individudrucella suidsolates have been found that con-

tain one 3250-kbp chromosome or two rearranged chromosomes that could
have arisen through recombination events involving rRNA genes (117). Nu-
merous other cases of intra-species, large-scale, genomic variation have also
beenfound. For example, one of fiviycoplasma hominisolates studied has a
300-kbp inversion relative to the others (135), and less well-understood genome
rearrangements appear to be frequent in many species incBdailfus cereus

(32, 33),Bacillus subtilig112),Helicobacter pylor{115),Bordetella pertussis
(230),Neisseria gonorrhoea@8), Campylobacter jejur(il84, 240) L actococ-

cus lactig(57, 139, 140), andeptospira interrogan§271). In none of these are

the true dynamics of the situation understood. In no case is the rate of rear-
rangement known or whether particular rearrangements are under selection in
the wild.

Accessory Elements

In most cases where sufficient information is available, the genomes of dif-
ferent isolates of the same bacterial species contain multiple insertion/deletion
differences, eachinthe few kbp to 200-kbp range. These are thoughtto be largely
due to integrated accessory elements (e.g. 146), the transposons, integrons,
conjugative transposons, retrons, invertrons, prophages, defective prophages,
pathogenicity islands, and plasmids. These are not reviewed in detail here, ex-
cept to note that these and related elements are present in many if not all of
the major bacterial phylogenetic branches and thus contribute to the observed
intraspecies variability in genome structure. The characteristic of each of these
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types of elements relevant to this discussion is that various members of each
family of elements may be found integrated into the chromosomes of different
individuals, and that any given element may or may not be present in a particu-
lar natural isolate’s chromosome. The evolutionary reasons for keeping genes
on accessory elements is thought to involve the advantages of genetic mobility,
and these have been previously discussed (25, 44, 146).

Thus, the genome of each bacterial species can be thought of as being com-
posed of a universally present core of genes that carries with it in each individual
a smattering of accessory elements that can be free replicons or be integrated
into the chromosome at various places. This universally present core of genetic
material is referred to here as teadgenome orendahromosome; the ac-
cessory elements, both free and integrated, are callesktijenome (from the
prefixesenda, inside or at the core, arekc, outside or extra). The individual
accessory elements can be functional or nonfunctional (in a state of evolution-
ary decay) and apparently may be selfish (insertion sequence) or be of great
value to the bacterium under particular circumstances (pathogenicity island,
integron with drug-resistance genes), or be a combination of the two (prophage
that carries a bacterial virulence gene). Many of these elements can be recog-
nized in nucleotide sequence by the types of genes they carry, e.g. transposase
in transposons, known virulence genes in pathogenicity islands, virus structural
genes in prophages, etc. However, some accessory element gene homologs can
exist outside of accessory elements, and the variability in these types of genes
is large enough that outliers, nonorthologous analogs, or previously unchar-
acterized accessory element genes would be missed. Thus, at present, when
sequence information often substantially precedes functional analysis, it is not
always possible to recognize integrated accessory elements from pure sequence
information from one individual organism.

Recent genome comparisons and sequencing efforts have shed new light par-
ticularly on the nature of defective prophages and pathogenicity islands. Next
to transposons with their unique and recognizable transposase genes, prophages
may be the easiest to recognize. The bacterial genomes whose sequences have
been completed contain numerous recognizable prophages, both apparently
intact and defective, as well as other accessory elemeétsnfluenzaeRd
contains at least one possible functional prophage (75) and a probable defec-
tive prophage (R Hendxi& G Hatfull, personal communicationlg. coli K12
contains one intact prophage)( at least eight apparently defective prophages,
and 42 insertion sequences or parts thereof (Br)subtilis contains three
known defective prophages and seven additionallAich regions that could
be integrated accessory elements (133). Hedicobacter Synechococcuys
MycoplasmaandBorreliacompleted genomes do not have currently recogniz-
able prophages, bttelicobacterhas at least one putative pathogenicity island.
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In these four cases, the temperate bacteriophages that might naturally infect
them have not been characterized, and bacteriophage diversity is extremely
great (e.g. 39), so they could easily have been missed; these four genomes
harbor 9, 99, 0, and 1 transposase genes, respectively, that indicate the proba-
ble presence of that number of transposable elements.Edhelia genome
carries about a dozen transposase genes or fragments thereof, none of which
appears to be intact. The least damaged appears to have one frameshift mutation
in its coding region (80).) So far, the ratio of inserted accessory elements to en-
dogenome seems to be smaller in small-genome bacteria than in larger-genome
bacteria. Perhaps the process of minimizing their genome size has resulted in
removal of integrated accessory elements?

Integrated accessory elements usually carry with them genes that encode the
enzymatic machinery required for mobility, but if random mutation inactivates
that machinery, the element may enter a state of immobile stability or decay
in which genes that are not useful to the host are slowly inactivated and lost
by stochastic nucleotide changes and deletion. Genes useful to the host could
be kept and even modified to better suit the host’s needs. Defective prophages
are thought to be integrated bacteriophage DNAs undergoing this process. The
complete sequence &f colicombined with the large body of knowledge con-
cerning the lambda-like bacteriophages provide a relatively good understanding
ofits lambdoid defective prophages. As an example, defective prophage DLP12
(150) is compared to the bacteriophage genome in Figure 5. A typical lambdoid
phage genome contains about 60 genes, and many of them, especially the virion
assembly and control genes, have been deleted from DLP12, leaving about 30

Figure 5 E. colicryptic prophage DLP12E. coli strain K12 prophage DPL12 is shown above,

and a lambdoid bacteriophage genome is shown below; conngctipgreasndicate homologies
between the two DNAs. In each map genes are indicated by boxes; those above each map are
transcribed rightward and below leftward; selected gene names are shown above and below the
two maps. Black and gray boxesdicate all the open reading frames in DLP12 and selected
genes on the lambdoid phage genombijte boxesndicate endochromosomal genes outside of
DLP12. Only genes with homologs in DLP12 are shown on the lambdoid chromogoross-

hatched boxesn the DLP12 map indicate insertion sequences. The lambdoid phage shown is a
composite of several closely related phages, but shows all the genes in their correct positions. The
DLP12 genes with known phage homologs have different closest known relatives as falibws:
andxis-P22; P andren-A; nin region genes-82; Q-21; Ic-PA-2; lysis and virion assembly genes

—X. Black circlesindicate genes that are naturally poorly expressed and require a mutation or IS
excision to be expressedVhite circlesindicate genes that are obviously truncated or disrupted
compared to their phage counterparts. Since analyses of lambdoid phage genes have notyetreached
saturation (39), the gray genes in DLP12 might in fact have been a part of the prophage genome
that originally occupied this site. Curiously, one, orf b0545, is very simildE.taoli orf ybiIB,

which is immediately adjacent to the phagattachment site.
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open reading frames. Of these genes, two have been apparently damaged by IS
insertion and five by deletion; five genes are known to be potentially functional

(if one selects for excision of the 1S5 from thenpCgene) by virtue of various
genetic analyses. The status of the remaining genes is unknown, but one is very
similar to the lambddor gene, a possibl&. coli virulence gene (8). Little

is known about the rates of decay of such “dead” elements. The presence of
DLP12-like elements at the same location in otliecoliisolates has not been
investigated, but insertions at the attachment site of lambda-like phage 21 have.
Of 78 isolates examined, 3 carry the defective prophage el4 or a relative, and
30 have phage 21-like prophages integrated at that site (at least some appear to
be defective) (253).

Pathogenicity islands have been defined as regions of the chromosome in
pathogenic bacteria that contain clusters of virulence factor encoding (host in-
teraction) genes such astoxins, pili, and host cell adsorption and invasion factors
(95, 96). They also have one or more of the following properties: association
with mobile DNA factors (e.g. IS sequences, integrase genes, temperate phage
attachment sites), less than universal distribution in natural isolates, unusual
codon usage or &C content, and the ability to occasionally undergo precise
excision. They can be of any size; the largest known to date is 190 kbp (96). Be-
cause of their sporadic presence and apparent mobility, they contribute signifi-
cantly to the variability in genome content in many pathogens. The distributions
of four different chromosomal virulence determinants were studied by Boyd &
Hartl (21), and they found that the four sequences tested were present in 10,
11, 28, and 28 of 7E. coliisolates examined. Although much less is known in
most other bacterial phyla, pathogenicity islands likely represent one aspect of
a more universal phenomenon that we might call specialization islands, which
confer particular metabolic capabilities, defenses, etc, and so allow a fraction
of the members of a bacterial species to occupy very specialized niches.

The accessory elements comprise a group of genetic elements that may or
may not be integrated and whose definitions can overlap and are not yet always
precise. These definitions are evolving, and as new paradigms emerge, they will
be no doubt modified, but in the final analysis, specific functional information
will be required in all cases to understand their particular properties. Nonethe-
less, given the significant ranges in chromosome size within species in many
bacterial phylogenetic branches, most species will likely have within them at
least some integrated genetic elements that fall into this category. Figure 6
diagrammatically shows these elements in a generic bacterial genome.

Systematic Structural Variation at the Gene
to Nucleotide Level

Different bacterial genomes have characteristic codon usag&; Gontent
(ranging from about 75% to 25%), GC strand bias, nearest neighbor frequencies,
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Figure 6 A generic dynamic bacterial genome. According to our current view, a generic bacterial
genome is primarily made up of an endogenome consisting of one or more endochromosomes,
shown in black (1 & 2). Components of the endogenome can be linear or circular and may or may
not be undergoing segment shuffling or inversion. Other systematic physical changes (e.g. white
invertable section and slipped strand mispairing changes indicated by Xs) may be occurring at a
noticeable frequency, but the sequences in the endogenome are present in all healthy individuals
(except for nonorthologous replacementsrimsshatch In addition to this core of genetic material
common to all members of a species, a number of accessory elements may or may not be present
(A—H). These include multiple types of plasmids that may exist as free repliebnsr (ntegrated

(F), prophages or fragments thereof that may be integrated or in free plasmidBpBn K, G),

and pathogenicity island#\( C). Finally, smaller mobile elements of various kinds (transposons,
integrons, etc) can be inserted into any of the above genome compathérkdlack lines.

and oligonucleotide frequencies, and although their mechanistic origins are not
always entirely clear, these characteristics likely evolve slowly enough to be of
use in attempting to decipher evolutionary histories of horizontally transferred
DNA regions (see 137,138). Neither these nor nucleotide modifications or
random sequence polymorphisms are discussed further here, since they are not
systematic changes.

Nonetheless, there are programmed smaller-scale structural genome differ-
ences in bacterial genomes tha) €an occur randomly in time o) are
built into particular responses. Both will contribute to individual genome dif-
ferences within the affected species. The former cause semistable, reversible
phase variations in phenotype, in which members of a population spontaneously
change properties (due to switches between gene expression states), with a



364 CASJENS

small probability at each cell division. Although these can have a number of
alternate states, they are reversible with low probability. The known response-
programmed genome changes occur irreversibly in particular cells that are des-
tined not to give rise to progeny (the latter are analogous in a sense to somatic
cells of multicellular organisms). In addition, transient amplifications of par-
ticular or random regions of the genome occur in bacteria and can be stabilized
by selection (161, 250), but it is unclear whether they should be considered
systematic changes (i.e. programmed to occur in a particular way).

There are two characterized examples of somatic cell analogs in which dead-
end genome rearrangements are known to oc&)rthé mother cell chromo-
some inB. subtilisspore formation and the chromosome of the heterocyst in
some cyanobacteria. In both cases the rearranged chromosome is not destined
to be replicated, and a specific rearrangement causes important changes in gene
structure and expression (reviewed in 98).

The first examples of reversible systematic structural changes in (nondead-
end) bacterial DNAs were the invertase-catalyzed inversion of a promoter region
in Salmonellahat switches the orientation of a promoter so that two alternate
flagellin genes are expressed and inversions that exchange two tail-fiber pro-
tein domains in phage Mu and P1 lysogens (summarized in 197). Similar
systems have subsequently been identified in other bacteria (e.g. 21, 67-69),
suggesting that it is a common mechanism for allowing a slow alternating be-
tween two gene expression states. Some of these may be catalyzed by homol-
ogous recombination rather than an invertase (66), and overlapping inversions
can cause more complex rearrangements (67, 68).

In addition, there are cassette mechanisms in which DNA sequence informa-
tion from unexpressed pseudogenes is physically placed in an expression site.
These can be either distributive, where the pseudogenes do not appear to be
clustered in one location, or organized, in which the pseudogenes are tandemly
arrayed in one or a few locations. The only organized cassette mechanisms
known in bacteria are found Borrelia burgdorferi(268) andB. hermsii(202),
where outer-surface proteins are changed using information brought into the
expression site from the pseudogenesBlburgdorferj the causative agent
of Lyme disease, the system has a single plasmid-borne expression site and
15 different, silent, tandem pseudogenes near the expressionN\steseria
gonorrhoeagpilin expression site information appears to be changed through
a distributive cassette mechanism. Information is imported from a number of
silent (sometimes partial) pilin genes scattered about the chromosome (129).

Yet another mechanism by which two individuals from the same bacterial
species can differ at the gene level is by nonorthologous replacement of genes
by nonhomologous genes of similar function. The best-studied examples of
this type of gene replacement are in the temperate bacteriophage genomes (see
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39), but it can also happen in the bacterial endochromosome. For example,
different individualSalmonella entericesolates can have alternate, nhonhomol-
ogous endochromosomal genes (at a particular location) that encode different
enzymes involved in the synthesis of its surface polysaccharide (262). In this
case, there may be selective pressure to diversify the structure of the polysac-
charide, and so horizontal transfer of endochromosal information can be seen;
normally it may be infrequent enough to make it unlikely, in the absence of
such diversifying selection, to catch such an event before either loss or fixation
occurs within the species.

Phase variations in phenotype can also be caused by mechanisms that vary
the number of repeats in a repeated sequence (or length of a run of the same
nucleotide) in which the genes or their control regions are changed so that the
reading frame or the transcription of a gene is changed (68). Such structural
changes cause switches between on and off states for the expression of the
gene. Examples of this type of phase variation are changes in the number
of tandem CTTCTs in the leader peptide of tha surface protein genes in
Neisseria gonorrhoea@28) and variation in the length of a run of Cs in the
promoter of theBordetella pertussis figene (259). These changes are thought
to occur randomly with a small probability each generation through slipped-
strand mispairing during replication or unequal homologous recombination.

There are also unexpressed cryptic genes in bacteria that can be activated by
mutation. Such changes could be considered systematic, but are these genes
that are in the early stages of decay (resulting from disuse) that can still be
reactivated under selection, or are they genes that are being somehow kept in
an inactive state in case they are needed? Itis difficult to imagine how the latter
state could be maintained, since there should be no selection maintaining the
functionality of dormant genes. Genes of this type are now known to be located
on defective prophages [ergcEandrusA(118, 163)] as well as in apparently
endochromosomal regions (203)En coli.

SUMMARY

All these phenomena, and no doubt additional ones that we are not aware of yet,
contribute to bacterial interspecies genome plasticity and to the individuality
of members of a given bacterial species. However, beyond this, it is difficult if
not foolish to draw universal conclusions about genome structure in a kingdom
as diverse as the bacteria. The genomes of bacteria are often (usually?) very
fluid on an evolutionary time scale, both in terms of gene content and gene
order, such as the rapidly re-ordering chromosomal segmergslofonella
typhiand the genublycoplasma Some bacterial chromosomes seem stable in
overall gene content and order (e.g. some of the enterobacteria and members
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of the genusBorrelia), but even these may carry a wide variety of plasmids,
prophages, and pathogenicity islands, etc.

Bacterial genome structure is much more dynamic and diverse than was
originally expected, and so, to understand this aspect of bacterial biology, many
independently isolated individuals within a species must compared in some
detail before reliable conclusions regarding genome structure can be drawn.
Simply making a physical map (or even determining the complete nucleotide
sequence) of the genome of one individual from a species tells us little or
nothing of possible genomic plasticity that may be present, and conclusions
drawn from lone maps regarding overall genome structure in related species or
even all members of the same species will often be misleading.

At present, only a narrow view exists of the overall picture of bacterial
genome structural diversity and fluidity, but the coming complete sequences
of more bacterial genomes should allow more informative comparisons to be
made, but perhaps more important in the present context, they will provide the
detailed standards necessary for comparison with other natural isolates from the
phylogenetic groups in which they reside. Inthe coming decade, the anticipated
rapid expansion of knowledge of bacterial genome structure should open whole
fields of inquiry as yet only dimly perceived as questions.
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