
BIOINFORMATICS Vol. 16 no. 6 2000
Pages 494–500

A case study in genome-level fragment assembly

Ting Chen 1 and Steven S. Skiena 2

1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and
2Department of Computer Science, State University of New York, Stony Brook,
NY 11794, USA

Received on June 1, 1999; revised on November 18, 1999; accepted on December 9, 1999

Abstract
Motivation: We use the fact of two teams independently se-
quencing the one megabase genome of Borrelia burgdor-
feri as an opportunity to study the accuracy of genome-
level assembly.
Results: We compare the results of three different assem-
bly programs (PHRAP, TIGR Assembler, and STROLL) on
the DNA fragments used in both the Brookhaven and TIGR
sequencing projects. We also describe the algorithms and
data structures used in our assembly program STROLL,
which was used in the Brookhaven Borrelia project.
Availability: http://genetics.med.harvard.edu/∼tchen/
STROLL.
Contact: tchen@arep.med.harvard.edu and
skiena@cs.sunysb.edu.

Introduction
The problem of fragment assembly for shotgun sequenc-
ing is growing in importance and complexity, with new
sequencing methodologies being proposed and applied to
the larger and problematic genomes of higher organisms.
A large number of fragment assembly programs have been
developed, including CAP (Huang, 1996), FAK (Myers,
1996; Myers et al., 1996), FALCON (Gryan and Church,
1994), PHRAP (Green, 1996), Staden (Dear and Staden,
1991), and TIGR Assembler (Sutton et al., 1995). Many
of these have similar fundamental designs, but differ sub-
stantially on important engineering issues.

In July 1997, TIGR (The Institute for Genome Re-
search) announced successfully sequencing the genome
of Borrelia burgdorferi the bacterium which causes Lyme
disease using a shotgun sequencing strategy. Barely three
weeks later, a team at Brookhaven National Laboratory
independently completed its sequencing of Borrelia,
employing somewhat different technology. The circum-
stances of two groups independently but simultaneously
completing the same genome provide us with a unique
opportunity to study the state of the art in DNA sequenc-
ing, and compare fragment assembly across two different
projects.

This paper has two primary missions: first, we describe
the algorithms and data structures behind STROLL (Chen
and Skiena, 1997a,b, 1998), a fragment assembler we
developed for the Brookhaven National Laboratory team,
which was successfully applied to the assembly of B.
burgdorferi genome. Second, we present the results of
extensive experiments with STROLL and two impor-
tant genome-level fragment assemblers (PHRAP and
TIGR Assembler), using data from both the TIGR and
Brookhaven groups.

Our goal is not to identify the ‘best’ assembly program,
but to perform an analysis of the errors made by all
three of these programs so as to advance the design of
future assemblers. To our knowledge, these are the most
thorough experiments ever done in evaluating the accuracy
of large-scale assembly. To summarize our results:

• The set of large contigs formed by all the assemblers
are sufficiently different that it pays to run multiple
assemblers on the same data and merge the resulting
contigs. In particular, we recommend running multiple
assemblers during the gap-closing stage of any large
sequencing project.

• All assemblers have trouble with repeat regions in
both projects. In an attempt to resolve these problems,
modern assemblers incorporate two additional classes
of information; clone order constraints and sequence-
quality measures. However, our experiments show that
adding this information to the raw sequence data did
not improve the sizes of the contigs in the results of
these programs, although they did lead to a minor
improvement on the accuracy of the final consensus
sequence.

• We provide a taxonomy of the primary algorithms used
in each of the genome-level assemblers, which sheds
light on the differences between them.

Methods
STROLL began in collaboration with the Brookhaven Na-
tional Laboratory Sequencing Group, led by Dr William

494 c© Oxford University Press 2000



A case study in genome-level fragment assembly

Studier, to sequence the genome of B. burgdorferi. It
originally aimed to provide computational support for
the strategy of sequencing by primer walking (Studier
et al., 1989; Kieleczawa et al., 1992; Butler-Loffredo et
al., 1995). However, as the project progressed, STROLL
evolved into a general-purpose fragment assembler, which
supports a wide variety of sequencing technologies.

Features
Repeat regions have caused troubles in many genome
sequencing projects. In sequencing higher organism
genomes, we will encounter many longer repeats, but
none of the current assembly program can handle them
perfectly. The base quality information is one of the most
important methods being used in many assemblers to im-
prove sequencing accuracy and to solve repeats. STROLL
incorporates it in (1) pairwise comparison to discriminate
overlaps, repeats, and chimeras, (2) incremental multiple
alignments to merge one fragment into partial assemblies,
and (3) consensus generation to determine each consensus
base and give an associated confidence level. Besides
supporting the above features, STROLL includes the
following algorithms to improve speed and reduce space:

• The use of a space-efficient data structure, the suffix
array (Manber and Myers, 1993), to quickly reject non-
overlapping fragment pairs, thus reducing the number
of calls to the pairwise comparison.

• The use of a fast banded pairwise comparison algo-
rithm, with affine gap penalties and base qualities to
search local similarities of two fragments.

• The use of an overlap recovery strategy (exploiting
transitive relations) to recover most of the undetected
overlaps.

• The use of an incremental multiple alignment algo-
rithm to add fragments into contigs one-by-one in the
order of pairwise alignment qualities.

All the algorithms have been chosen purposely for high
speed and using low space requirements. In a megabase
genome-level sequencing project, the required memory
space can easily run to several hundred megabytes and the
assembly time to tens of hours. To support the increasing
scale of sequencing efforts, all our algorithms run in linear
(or close-to-linear) time and take linear space.

Algorithm
Table 1 provides a taxonomy of the algorithms used in
PHRAP, FAK, TIGR, and STROLL. The basic assembly
algorithm in STROLL is described as follows. Details are
provided in the subsequent paragraphs.

1. Build a suffix array for both strands of all fragments
and extract all exact matches to form a list of
candidate fragment overlaps.

2. Perform banded pairwise comparisons on each frag-
ment pair in the candidate list, generate potential
overlaps, and reconstruct missed overlaps using
transitive relations.

3. Classify overlaps into multiple levels, using base
qualities and alignment qualities.

4. Start with the current cleanest fragment as the initial
assembly seed and proceed to step 7 when no seed
is left.

5. Select the fragment with the best overlap to continue
the current assembly; if none is found, go to step 4,
starting a new contig.

6. Add the fragment into the contig; if it fails; go to
step 5.

7. Optimize local multiple alignments and generate
consensus.

These phases are discussed in greater detail below.

Suffix Arrays and Exact Match Heuristic. STROLL
uses an exact match strategy which quickly rejects non-
overlap fragment pairs if they do not share exact matches
over a threshold length. Compared to suffix trees and
hash tables, the suffix array (Manber and Myers, 1993)
is a flexible, space-efficient and time-compatible data
structure to extract all exact matches. It consists of an array
of sorted suffixes and an array of longest common prefixes,
and requires only 6 bytes per character or 12 bytes per
base (for both strands). On a SUN Sparc-10 machine with
128 Mgb RAM, we can construct a suffix array of 200k
base-pairs in 20 s and a suffix array of 4M base-pairs in
15 min. All the exact matches over a threshold length can
be easily obtained by traversing the array of the longest
common prefixes and fragment pairs whose exact matches
are less than the threshold are rejected. In Chen and Skiena
(1997b), it has been established that choosing a proper
threshold can reduce the calls to pairwise comparison by
up to 1000 times while maintaining a high accuracy.

Pairwise Comparison. The most used sequence compar-
ison method is the Smith–Waterman (Waterman, 1995)
algorithm, which finds the optimal alignment of two
fragments by maximizing the score of a given matching
function. However, the Smith–Waterman algorithm re-
quires quadratic time. In order to speed up the pairwise
comparison, STROLL heuristically searches for the
best possible alignment path of two fragments and then
performs a banded Smith–Waterman algorithm with an
affine gap penalty to determine the local similarities.
STROLL searches for local similarities instead of global

495



T.Chen and S.S.Skiena

Table 1. Designs of PHRAP, FAK, TIGR Assembler and STROLL

PHRAP FAK TIGR STROLL

Overlap Heuristic Exact matches Inexact matches Exact matches Exact matches
Detection Implementation Sorted suffixes Unknown Hash Table Suffix array

Pairwise comparison Banded S–W Incremental align Smith–Waterman FASTA-like
Search restriction Banded S–W Error sensitive Smith–Waterman Banded S–W
Time complexity Adjusted Adjusted Quadratic Adjusted

Assembly Layout algorithm Greedy Greedy Greedy Greedy
Multiple alignment Heuristic Refined Refined Heuristic

Features Uses qualities? Yes(Phred) No was No Yes
Uses constraints? No No Yes Yes
Detects repeats? Yes Yes Yes Yes
Detects chimeras? Yes Yes Yes Yes

similarities for two reasons: (1) the end of a fragment
usually contains high rate of errors which should not be
counted for similarities, and (2) local similarities help
finding repeats and chimeras. Base quality measures
(specifically the logarithm of the probability of the given
base) are used as weights in the dynamic programming
to find the optimal alignment. At this step, we accept
alignments with at least 30 base-pair long, and later clas-
sify them by the length of the alignment, the percentage
of high quality matches, the percentage of high quality
mismatches, and the length of high quality overhangs.
High quality matches contribute more to the similarities,
while high quality mismatches cost more. Two key factors
to determine repeats and chimeras are the high quality
mismatches and high quality overhangs. Most overlaps
missed by the exact match heuristics can be reconstructed
through a transitive relation. Our experiments in Chen and
Skiena (1997b) have shown that most of missed overlaps
can be thus reconstructed.

Overlap Classification. The purpose of overlap classifi-
cation is to give a more accurate measure of the quality of
an overlap than its similarity score. Pairwise comparison
scores sometimes miss important local information such
as high quality mismatches, high quality overhangs, the
distribution of the mismatches, and clone constraints.
The clone constraints account for two fragments being
obtained from the same clone. These constraints restrict
how far apart these two fragments can be and whether
they reside on the same strand or the reverse strand. In
most shotgun sequencing projects, the two fragments are
located at the two ends of an insert, but in Brookhaven’s
project additional possibilities result from the primer
walking and nested deletion procedures. Low quality
mismatches are usually caused by base calling errors:
overcalls, undercalls or miscalls, but high quality mis-
matches indicate a possibility of repeats because a single

high quality base is typically more than 99% accurate. All
overlaps are evaluated by several criteria including match-
ing percentage, length of overlaps, percentage of high
quality mismatches, length of high quality overhangs,
and constraint-satisfied overlaps. A repeat is identified
if an overlap has one long high quality overhang, or
contains a high percentage of high quality mismatches,
or violates clone constraints. A candidate chimera, which
does not fully overlap other fragments in other clones,
involves at least two repeated overlaps and can be broken
into two distinct parts by these repeats. Both the repeats
and the chimeras are classified into the group with the
lowest scores. The remaining overlaps are classified into
multiple levels, and specially, the overlaps satisfying
clone constraints are clustered into the higher score
groups. This guarantees a constraint-satisfied overlap,
obtaining by primer walking or nested deletion, having
a higher priority. In the later assembly phase of merging
fragments, the score of overlap classification determines
which fragment should be added next.

Merging the Fragments with the Contigs. The assembly
starts with the cleanest available fragment. The cleanliness
of a fragment is defined as a combination of the number
of good overlaps it involves and the percentage of
high quality bases. Any fragments involved in repeats
are among the least clean. In the process of merging
fragments, every contig starts by the current cleanest
seed and extends as far as possible. A contig is formed
incrementally: a new fragment which has the best overlap
classification score with some fragment at the end of the
contig is chosen. If this fragment fails to be added into the
contig, the next best one is chosen until no fragment can be
added, and this contig is complete. If clone constraints are
used, the fragment to be added cannot not violate either
the clone-length or clone-strand constraints. STROLL
takes advantage of extra constraints imposed by special

496



A case study in genome-level fragment assembly

sequencing technologies. For example, all the within-
clone overlaps generated by nested deletion or primer
walking are labeled as better overlaps in the classification,
and are added first to form a reliable skeleton across the
genome, and thus avoid adding repetitive fragments in the
assembly.

Incremental Multiple Alignments. Adding a fragment
into a multiple alignment can be very slow, because
potentially it has to align with every other fragment in
the multiple alignment. STROLL first locates the region
where the fragment will be added into the multiple align-
ment, and then performs banded alignment algorithms
to find the best alignment. If the alignment fails, a full
alignment algorithm is then called to redo it. For good
quality data assemblies, this strategy saves time because
most fragments can be successfully merged by the banded
alignment. Adding a fragment into the multiple alignment
is performed by aligning the fragment with the profile
sequence generated from the previous multiple alignment.
Here we use the base quality measures and the semiglobal
alignment. The alignment is rejected if it contains a lot of
high quality mismatches.

Optimal Multiple Alignments and Consensus Generation.
Incremental multiple alignment does not always give the
optimal alignment. The alignment can be adjusted locally
by ReAligner program (Myers and Anson, 1997) for opti-
mal solutions. Currently, the final consensus is determined
for each column of the multiple alignment. Base qualities
and strand information are used to determine the consen-
sus with a confidence level. STROLL first looks for high
quality calls from both strands, and then the number of
high quality calls at one strand, and finally the low quality
calls.

A Tale of Two Sequencing Projects
Starting at the end of 1995 and the early 1996, The In-
stitute of Genome Research (TIGR) and Brookhaven Na-
tional Laboratory were independently funded to sequence
the genome of B. burgdorferi.

Two years later, TIGR released its 910 715 base-pair
sequence on July 25, 1997 (the full genome annotations
were published in Fraser et al. (1997)), and Brookhaven
reported its 893 370 base-pair sequence of B. burgdorferi
(Studier et al., 1997) on August 19, 1997. The two se-
quences largely agree with each other, however, the TIGR
sequence extends 3 728 base-pairs to the left and 14 026
base-pairs to the right of the Brookhaven sequence. Minor
differences between the two sequences include approxi-
mately 380 mismatches and approximately 50 ambiguities
on each of the sequences. Of the 380 discrepancies, 161
are in the 35 193 bases of the Brookhaven sequence where
only a single sequence determination has been made,

Fig. 1. Base-pair sum sizes of sorted contigs.

Table 2. Gross statistics of various assemblers on the Brookhaven data

PHRAP STROLL TIGR

Assembly time in minutes 71.5 81.0 455.8
Number of contigs formed 56 89 129
Length of four largest contigs 857 113 858 448 332 700

reflecting the lower reliability of single-lane coverage.
For more details, see Studier et al. (1997). For many
of the discrepancies between the projects, it is unclear
which group’s sequence is erroneous, or indeed whether
either group is erroneous. In fact, the two groups may be
sequencing slightly different strains of Borrelia.

Although similar results were achieved, the two groups
used different sequencing strategies. TIGR apparently
used a deep shotgun sequencing strategy with approxi-
mately 7.5-fold genome coverage and generated 19 078
fragments (including plasmids). For Brookhaven, the
Borrelia project was designed as a test case for their
primer-walking technology. A framework of dual-end
sequenced clones with roughly two times coverage was
built, with remaining gaps closed using directed sequenc-
ing. A total of 8136 high quality fragments (base-error
rates below 1%) were generated for an approximately
4-fold genome coverage. The final multiple alignments
and consensus have been carefully and manually checked
for mismatches and clone length constraints. All chimera
fragments and low quality fragments have been removed.
This data provides a good test of how a program handles
an assembly with repeats.

Comparing the Assemblers
It proves to be a non-trivial problem to compare the
results of different assembly programs on a given project’s
data. In our case, there are two separate projects which
are substantially in agreement. We have run each of the

497



T.Chen and S.S.Skiena

Table 3. Assembly accuracy of PHRAP, TIGR Assembler, and STROLL on Brookhaven data

Contig Base pairs Genome start Genome end Errors

PHRAP 1 390 227 503 141 893 369 12
2 275 656 255 275 909 4
3 166 130 307 382 476 752 Miss (B)
4 25 100 477 372 502 470 1

Sum 857 113 17 (0.0025%)

TIGR 1 118 225 735 638 853 862 7
2 99 124 611 885 711 008 8
3 70 917 307 048 377 964 7
4 44 434 420 759 468 433 Miss (B)

Sum 332 700 22 (0.0076%)

STROLL 1 339 458 553 907 893 368 15
2 276 292 0 276 290 4
3 191 268 307 050 502 695 Miss (B)
4 51 430 502 676 554 105 3

Sum 858 448 22 (0.003%)

Table 4. Assembly accuracy of PHRAP, TIGR Assembler and STROLL on TIGR data

Contig Base pairs Genome start Genome end Errors (bps)

PHRAP 1 532 940 370 691 910 715 Miss (T1) (T2) (T3)
2 369 488 72 369 537 58
3 3088 515 088 518 175 0

Sum 905 516 (0.015%)

TIGR 1 45 754 764 201 809 950 18
2 37 014 294 185 331 190 31
3 32 279 551 861 584 139 10
4 27 806 113 716 141 524 24

Sum 142 853 (0.07%)

TIGR 6 24 737 446 796 471 518 Break (T1)
15 19 599 679 506 699 963 Miss (T2)

STROLL 1 392 250 76 955 469 048 612
2 266 571 471 965 738 765 Break (T1) & Miss (T2)
3 172 156 738 638 910 713 258
4 77 023 0 77 013 36

Sum 908 000 (0.14%)

assemblers on both of the projects under a variety of
conditions, and measured the edit distance of the large
contigs to the human-edited final sequence. In these
experiments, the most recent version of the program which
was made available was used. PHRAP’s last revision to
the files was labeled July 25, 1996, and TIGR Assembler’s
was 1996. It is important to remark that both PHRAP and
TIGR Assembler have been significantly upgraded since
then, and so our results may not apply to the most current
version of their assembler.

Two data sets were used in the tests. One is the
whole set of 8136 fragments from Brookhaven. An-
other is what we were given from TIGR, a subset of
9432 fragments. Three test results are shown: (1) gross
assembly statistics on Brookhaven data, (2) assembly
accuracy on Brookhaven data, and (3) assembly accu-
racy on TIGR data. No quality data has been included
in these tests. The next three paragraphs detail these
results. More tests are available in Chen and Skiena
(1997b).

498



A case study in genome-level fragment assembly

Table 5. Tests of TIGR Assembler and STROLL on Brookhaven data with clone constraints

Contig Base pairs Genome start Genome end Errors (bps)

TIGR 1 59 382 318 582 377 962 5
2 50 639 660 369 710 969 0
3 49 457 804 170 853 627 11
4 44 211 154 563 198 772 0

Sum 203 689 16 (0.008%)
25 13 564 420 759 433 835 Miss (B)

STROLL 1 199 443 10 006 209 448 4
2 128 077 502 676 630 752 5
3 102 514 790 856 893 368 7
4 83 435 646 870 730 303 0

Sum 513 469 16 (0.003%)
5 81 816 391 520 476 576 Miss (B)

Gross Statistics. Gross assembly statistics on the
Brookhaven data are reported in Table 2. First, Table 2
provides a very rough sense of the speed of each program.
We note that these running times may not reflect the
‘true’ efficiency of each program because some assembly
programs are error-sensitive, and hence faster on higher
quality data, and some assembly programs permit a
trade-off between speed and accuracy. Although we
have carefully tested each program under a variety of
conditions, it is conceivable that we missed the optimal
setting, and we may also ignore the extra efforts in some
programs to solve problems of repeats/chimeras or to
generate more accurate multiple alignments.

All timing runs were conducted on a Sun Sparc10 ma-
chine with 128 Mb RAM. Table 2 shows that STROLL
and PHRAP have similar speed while TIGR Assembler is
about six times slower. It is likely to be because TIGR As-
sembler spends more time on the dynamic programming in
pairwise comparison. We also tested PHRAP on data with
artificial high base quality, and found no significant differ-
ence in time and the results. PHRAP has successfully used
base quality measures from PHRED to improve the assem-
bly accuracy. This could be because the data quality is very
good. Table 2 also provides gross statistics on the forma-
tion of contigs. The number of contigs is a measure of the
aggressiveness of the assemblers. PHRAP produces the
minimum number of contigs, which is in principle a de-
sirable goal. However, even more important is the size of
the largest contigs, since these represent the final desired
sequence. In Table 2, we report the sum of the sizes of the
four largest contigs, which show PHRAP and STROLL
were equally successful at generating large contigs.

Figure 1 illustrates the issue of contig size from a
different perspective. The contigs from each program were
sorted by size, and the the prefix sums of the sequence
computed. Thus the i th point reports the base-pair sum
of the i largest contigs. The faster this curve approaches

the actual genome size, the less effort biologists need
to close the gaps. PHRAP and STROLL provide almost
identical curves (even though STROLL produces almost
twice as many contigs), while TIGR Assembler is the most
conservative of the programs.

Assembly on Brookhaven Data. Assessing the accuracy
of assembly requires special treatment of the repeat
regions. Brookhaven’s reported genome has a long and
nearly tandem repeat region: (B)—Two copies of a 3140
base-pair region (with only one mismatch) containing
ribosomal RNA which starts at positions 403 700 and
433 940. Table 3 lists the four largest contigs from each
program and their locations on the reported Brookhaven
genome sequence. Only one copy of the ribosomal RNA
is shown in all programs: contig 3 of PHRAP, contig 4
of TIGR Assembler and contig 3 of STROLL. It demon-
strates the difficulty of assembling the ribosomal RNA
region, since two repeat copies are longer than a read
length and almost identical. Therefore, a pure shotgun
sequencing assembly without additional constraints may
very well misassemble long and perfect repeats. On the
other hand, comparing the contigs formed by STROLL
and PHRAP shows that PHRAP’s contig 1 is a merge of
STROLL’s contigs 1 and 4, and STROLL’s contig 3 is a
merge of PHRAP’s contigs 3 and 4. This implies some
degree of complementary between the two assembly pro-
grams: running both on the same data and comparing the
assembly results may eliminate some gaps and get a better
result. The error rates of the final consensus sequence for
the three programs are lower than the standard 0.01%:
0.0025% for PHRAP, 0.0076% for TIGR Assembler,
and 0.003% for STROLL. We also artificially generated
base qualities for PHRAP according to the formula in
Green (1996) and ran PHRAP again. There were no major
difference among the reported contigs, because the data
quality is very good.

499



T.Chen and S.S.Skiena

Assembly on TIGR data. We also tested PHRAP, TIGR
Assembler, and STROLL on the TIGR’s Borrelia genome
sequences. Only the clean region of each fragment was
provided, and read qualities were not available for these
tests. TIGR’s genome sequence contains three noteworthy
regions: (T1), two copies of 3140 base pairs, containing
ribosomal RNAs, in the region between 465 180 and
472 180; (T2), seven copies of 161 base-pair tandem
repeats in the region between 696 462 and 697 576; (T3),
one copy of a problematic 3570 base-pair region, from
514 950 to 518 519 in TIGR genome sequence. The results
of each program are shown in Table 4. PHRAP reported a
total of 3 contigs and STROLL reported a total of 4 contigs
and TIGR Assembler reported 35 contigs larger than
10 kb. All the top contigs compared to the reported TIGR
genome sequence are listed in Table 4. Again, PHRAP
is the most aggressive program in forming large contigs
with the top two contigs covering most of the genome, but
it misassembled both repeat regions (T1) and (T2), and
missed (T3) region as well. STROLL formed four large
contigs providing similar coverage, and TIGR Assembler
remains too conservative with tens of small contigs spread
all over the genome. Both of them missed the tandem
repeat region (T1) as well and broke the RNA repeat
region (T2) into two distinct contigs. All the programs
failed to assemble the tandem repeat region, which is
longer than a fragment read length. It indicates that tandem
repeats are another serious problem in many sequencing
projects. The base error percentages of the final consensus
sequences are also reported in Table 4, and only correct
contigs are taken into account. PHRAP has the lowest
error rate (0.0015%), which indicates that PHRAP does a
better job of discriminating false alignments, constructing
multiple alignments, and generating consensus sequences.
TIGR Assembler reported a reasonably accurate final
consensus sequence (0.07% error rate), while STROLL
made substantially more mistakes (0.14% error rate).

Assembly on Brookhaven data with clone constraints.
Both TIGR Assembler and STROLL use clone-end
constraints and clone-length constraints in fragment
assembly. We added these constraints to the Brookhaven
sequence data and tested them on both programs, hoping
that these additional constraints can overcome the prob-
lems of repeat regions. The distance for two fragments
from two ends of a clone is restricted to be between 2k
bps and 10k bps. Our results are shown in Table 5, where
the top four largest contigs are listed. However, the results
in Table 5 are quite disappointing. They prove inferior
to those from Table 3, in which the resulting contigs
are smaller. This is because both programs excessively
favor the fragment that satisfies clone constraints in the
construction of multiple alignments. Thus if the clone
constraints are not accurate, the assembly is affected.

How best to incorporate clone constraints in the assembly
remains an open problem.

Acknowledgements
We thank Bill Studier and the rest of the Brookhaven
group for interesting discussions on primer walking and
sequencing. We also thank Granger Sutton, Gene Myers,
Phil Green, and Xiaoqiu Huang for making their data and
assembly programs available for our comparisons.

References
Butler-Loffredo,L., Dunn,J.J. and Studier,F.W. (1995) Ligation of

hexamer templates to produce primers for cycle sequencing or
the polymerase chain reaction. Analyt. Biochem., 228, 91–100.

Chen,T. and Skiena,S.S. (1997a) Trie-based data structures for
sequence assembly. The Eighth Symposium on Combinatorial
Pattern Matching, 206–223.

Chen,T. and Skiena,S.S. (1997b) How Good is Genome-Level
Fragment Assembly? Unpublished manuscript, Department of
Computer Science, SUNY at Stony Brook.

Chen,T. and Skiena,S.S. (1998) STROLL WWW Homepage. http://
www.cs.sunysb.edu/∼tichen/STROLL, Department of Computer
Science, SUNY at Stony Brook.

Dear,S. and Staden,R. (1991) A sequence assembly and editing
program for efficient management of large projects. Nucl. Acids
Res., 19, 3907–11.

Fraser,C.M. et al. (1997) Genomic sequence of a Lyme disease
spirochaete Borrelia burgdorferi. Nature, 390, 580–6.

Green,P (1996) Documentation for Phrap. http://bozeman.mbt.
washington.edu, Genome Center, University of Washington.

Gryan,G. and Church,G.M. (1994) Falcon: fast assemblies of large
contigs. http://arep.med.harvard.edu/labgc/falcon.html, Church
Lab, Department of Genetics, Harvard Medical School.

Huang,X. (1996) An improved sequence assembly program. Ge-
nomics, 33, 21–31.

Kieleczawa,J., Dunn,J.J. and Studier,F.W. (1992) DNA sequencing
by primer walking with strings of contiguous hexamers. Science,
258, 1787–91.

Manber,U. and Myers,E.W. (1993) Suffix arrays: a new method for
on-line string searches. SIAM J. Computing, 22, 935–948.

Myers,E.W. (1996) A suite of unix filters for fragment assembly.
Tech. Rep. Dept. of CS, U. of Arizona, Tucson, AZ, TR96-07.

Myers,E.W., Jain,M., Anson,E. and Larson,S. (1996) An interface
for a fragment assembly kernel. Tech. Rep. Dept. of CS, U. of
Arizona, Tucson, AZ, TR96-04.

Myers,E.W. and Anson,E. (1997) Realginer: a program for refining
dna sequence multi-alignments. Journal of Computational Biol-
ogy, 4, 369–383.

Studier,F.W. et al. (1997) Genomic sequence of Borrelia burgdor-
feri. http://www.bio.bnl.gov/htmls/chrom seq.html, 1997.

Studier,F.W. et al. (1989) A strategy for high-volume sequencing
of cosmid DNAs: random and directed priming with a library of
oligonucleotides. Proc. Natl Acad. Sci. USA, 86, 6917–21.

Sutton,G.G., White,O., Adams,M.D. and Kerlavage,A.R. (1995)
TIGR Assembler: a new tool for assembling large shotgun
sequencing projects. Genome Science and Technology, 1, 9–19.

Waterman,M.S. (1995) Introduction to Computational Biology.
Chapman & Hall, London, UK.

500


