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To enhance genetic manipulation of the Lyme disease spirochete Borrelia burgdorferi, we assayed the aadA
gene for the ability to confer resistance to the antibiotics spectinomycin and streptomycin. Using the previously
described pBSV2 as a backbone, a shuttle vector, termed pKFSS1, which carries the aadA open reading frame
fused to the B. burgdorferi flgB promoter was constructed. The hybrid flgB promoter-aadA cassette confers
resistance to spectinomycin and streptomycin in both B. burgdorferi and Escherichia coli. pKFSS1 has a
replication origin derived from the 9-kb circular plasmid and can be comaintained in B. burgdorferi with extant
shuttle vector pCE320, which has a replication origin derived from a 32-kb circular plasmid, or pBSV2, despite
the fact that pKFSS1 and pBSV2 have the same replication origin. Our results demonstrate the availability of
a new selectable marker and shuttle vector for genetically dissecting B. burgdorferi at the molecular level.

Borrelia burgdorferi is the etiologic agent of Lyme disease,
the most common arthropod-borne disease in the United
States (22, 34). The progressive development of a system to
genetically manipulate B. burgdorferi has provided many of the
requisite tools to analyze molecular mechanisms in this patho-
genic spirochete (4, 9, 10, 26, 29, 31, 33, 35).

Four antibiotic resistance markers have been used for mo-
lecular genetic analyses of B. burgdorferi (4, 12, 29, 31). The
first marker developed, a mutant gyrB allele that confers
coumermycin A1 resistance (26, 29, 30), has been used for
targeted gene disruption in B. burgdorferi (5, 11, 17, 38–40).
However, caveats regarding the coumermycin A1 resistance
marker include the tendency of the gyrB gene to recombine at
the chromosomal locus, which necessitates extensive screening
of transformants (26), and pleiotropic effects that are likely
caused by perturbed levels of DNA supercoiling (1, 2) (D. S.
Samuels, C. R. Kuchel, and M. E. Kresge, unpublished data).
In response to the need for an exogenous selectable marker,
Bono et al. fused the open reading frame of aphI, a kanamycin
resistance gene from Tn903, to either the B. burgdorferi flaB or
flgB promoters, thereby developing kanamycin resistance cas-
settes that function in B. burgdorferi (4). These hybrid resis-
tance markers have been used to disrupt genes (7, 12, 18, 20,
23), complement a gene (16, 25), demonstrate transduction by
bacteriophage �BB1 (10), and construct Escherichia coli-B.
burgdorferi shuttle vectors (9, 35, 36). A third selectable
marker, the ermC gene conferring erythromycin resistance, was
originally introduced into B. burgdorferi on a broad-host-range
plasmid from gram-positive bacteria (31). It has been used to

disrupt genes (15, 16, 18) and to conduct complementation
studies in B. burgdorferi (32). A gentamicin resistance marker
was constructed by fusing the aacC1 open reading frame to the
flgB promoter and used to disrupt genes (12, 36). Other anti-
biotic resistance markers have been identified recently but not
yet used to genetically manipulate B. burgdorferi (33).

With the new tools available to study B. burgdorferi at the
molecular level, genetic manipulation is poised to become
powerful and convenient. Currently, the genetic system needs
to be augmented by developing additional selectable markers
for complementation studies, multiple gene disruptions, and
dual-plasmid experiments. Therefore, we investigated whether
the aadA gene, which encodes an aminoglycoside-3��-adenylyl-
transferase that confers resistance to spectinomycin and strep-
tomycin (19, 24), can function in B. burgdorferi.

Shuttle vector construction and transformation. We con-
structed a hybrid antibiotic resistance marker by fusing the
aadA open reading frame to the strong constitutive flgB pro-
moter (13) on the backbone of the extant E. coli-B. burgdorferi
shuttle vector pBSV2 (35). The aadA gene from R100, a broad-
host-range plasmid originally isolated from Shigella flexneri (21,
37), was generously provided by Joachim Frey (Institute for
Veterinary Bacteriology, University of Berne, Berne, Switzer-
land) on plasmid pHP45� (24). Primers aadA F�NdeI (CAT
ATGAGGGAAGCGGTGATC) and aadA R�AatII (GACG
TCATTATTTGCCGACTACC), which introduced restriction
sites for enzymes NdeI and AatII, respectively, were used to
amplify the aadA gene by PCR, essentially as described previ-
ously (17, 29). The 802-bp aadA PCR product was then cloned
into plasmid pCR2.1-TOPO (Invitrogen) to create pTAaadA1.
pBSV2, generously provided by Philip Stewart (Rocky Moun-
tain Laboratories, Hamilton, Mont.), and pTAaadA1 were
each digested with AatII and NdeI. The digestion removes the
kanamycin resistance open reading frame and part of the zeo-
cin resistance gene from pBSV2. The appropriate restriction
fragments were resolved by agarose gel electrophoresis and
purified with a QIAEX II gel extraction kit (QIAGEN).
pKFSS1 (Fig. 1) was constructed by ligating the open reading
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frame of aadA (from pTAaadA1) to the flgB promoter (flgBp)
carried on the 5.3-kb backbone of AatII- and NdeI-digested
pBSV2 (35).

B. burgdorferi sensu stricto strain B31–A, a high-passage
avirulent clone of strain B31 (4), was routinely cultivated in
modified Barbour-Stoenner-Kelly (BSK-H) complete medium
(Sigma) at 34°C with a �5% CO2 atmosphere. B. burgdorferi
was electroporated with 1 to 10 �g of plasmid DNA and plated
in semisolid medium as previously described (27), although
10� medium 199 was fully or partially substituted for 10�
CMRL-1066 in some experiments. Transformants were se-
lected in either 160 to 400 �g of kanamycin ml�1, 1.5 �g of
spectinomycin ml�1, or 20 to 80 �g of streptomycin ml�1. A
mock electrotransformation (no DNA) served as a control.

Selection of transformants. B. burgdorferi was transformed
with either pBSV2, which carries the flgBp::aphI kanamycin
resistance cassette, or pKFSS1, which carries the flgBp::aadA
spectinomycin and streptomycin resistance cassette. Cells were
plated in medium containing kanamycin, spectinomycin, or
streptomycin to assess whether these antibiotics can be used to
select for B. burgdorferi transformants (Table 1). Transforma-
tion of B. burgdorferi with pKFSS1 yielded colonies on medium
containing either streptomycin or spectinomycin, but not kana-
mycin. Electroporation with no DNA, pBSV2, or pKFSS1
yielded high numbers of colonies when plated on medium
containing spectinomycin, but only cells transformed with
pKFSS1 produced colonies on plates containing streptomycin.

B. burgdorferi transformants isolated by selection with spec-
tinomycin or streptomycin were analyzed for the presence of

pKFSS1 by transforming total genomic DNA from these clones
into E. coli. Genomic DNA was extracted from five randomly
chosen spectinomycin-resistant and two streptomycin-resistant
B. burgdorferi colonies as described previously (28). DNA was
transformed into chemically competent E. coli JM109, and the
cells were plated on semisolid Luria-Bertani medium contain-
ing 60 to 100 �g of spectinomycin ml�1. flgBp::aadA confers
resistance to both streptomycin and spectinomycin in E. coli,
but many common cloning strains are resistant to streptomy-
cin. Plasmid DNA was recovered from E. coli transformants by
alkaline lysis (3). Only those E. coli cells transformed with
DNA from streptomycin-resistant pKFSS1 transformants of B.
burgdorferi acquired resistance to spectinomycin; pKFSS1 was
recovered from these E. coli transformants. pKFSS1 was not
recovered from any B. burgdorferi colonies isolated on plates
containing spectinomycin, suggesting that they were back-
ground mutants.

Plasmid stability. A randomly chosen B. burgdorferi trans-
formant carrying pKFSS1 was serially passaged in liquid
BSK-H medium without streptomycin selection at 34°C. After
about 50 generations, the culture was plated on semisolid me-
dium without selection, and 10 colonies were isolated. Total
genomic DNA was extracted from B. burgdorferi clones and
used to transform E. coli DH5	 to screen for pKFSS1, as
described above. Six of the 10 colonies isolated in the absence
of streptomycin selection contained pKFSS1. Therefore, B.
burgdorferi transformants maintained pKFSS1 for 50 genera-
tions. However, pKFSS1 is not as stable as the parental plas-
mid, pBSV2, which is maintained in all 20 colonies following
�90 passages in the absence of selection, as assayed by PCR
(36). This difference in stability was unexpected, because the
two plasmids have the same replication origin and are nearly
identical except for the selectable marker; pKFSS1 also has a
truncated zeocin resistance gene downstream of the aadA
gene.

Antibiotic resistance in B. burgdorferi. The ability of pKFSS1
to confer resistance to selected aminoglycosides and spectino-
mycin was measured to assess whether the flgBp::aadA marker
could be used in conjunction with the extant selectable markers
that confer resistance to similar antibiotics. Resistance was
assayed by inoculating media containing various concentra-
tions of streptomycin, spectinomycin, kanamycin, and genta-
micin antibiotics. Cultures of wild-type and transformed B.
burgdorferi were inoculated into 4-ml cultures of BSK-H at
approximately 106 cells ml�1 and grown at 34°C for about 72 h
in the presence of the antibiotics. Cultures were assayed for
growth by spectrophotometry as previously described (28). As-
says were replicated three to five times. The antibiotic concen-

FIG. 1. Schematic of pKFSS1. pKFSS1 was derived from pBSV2 by
replacing the kanamycin resistance open reading frame, under the
control of the flgB promoter (flgBp), with a spectinomycin and strep-
tomycin resistance open reading frame (aadA) from pHP45�. pBSV2
and pKFSS1 contain the lacZ	 fragment and multiple cloning site
(MCS) and the replication origin (ColE1) of pCR-XL-TOPO. Repli-
cation in B. burgdorferi is mediated by a sequence containing genes in
paralogous families (PF) 57, 50, and 49 (BBC01, BBC02, and BBC03;
open reading frames 1, 2, and 3) and two inverted repeats (IR) from
cp9, the 9-kb circular plasmid of B. burgdorferi.

TABLE 1. Transformation efficiencies of B. burgdorferi with pBSV2
or pKFSS1 in semisolid medium containing different antibioticsa

Plasmid
No. of colonies/�g of DNA (
SEM)

Streptomycin Spectinomycin Kanamycin

pBSV2 (aphI) 0 (
0) 327 (
41) 220 (
134)
pKFSS1 (aadA) 79 (
27) 695 (
136) 0 (
0)

a Control transformations with no DNA yielded no colonies when plated on
medium containing streptomycin or kanamycin, and the equivalent of 863
(
234) colonies when plated on medium containing spectinomycin.

6724 NOTES J. BACTERIOL.



tration that inhibits 50% of bacterial growth was determined
for wild-type B. burgdorferi and pBSV2 and pKFSS1 transfor-
mants (Table 2). The flgBp::aadA cassette in B. burgdorferi
transformants confers 10-fold resistance to spectinomycin and
approximately 100-fold resistance to streptomycin. No cross-
resistance to kanamycin or gentamicin was observed with the
flgBp::aadA cassette. Additionally, the flgBp::aphI cassette car-
ried on pBSV2 does not confer resistance to either spectino-
mycin or streptomycin.

Plasmid compatibility. The ability to transform B. burgdor-
feri with two different shuttle vectors would expand experimen-
tal opportunities. Therefore, we transformed cells carrying
pKFSS1 with the shuttle vector pCE320 (9), which uses a
compatible replication origin from a 32-kb circular plasmid
and the flgBp::aphI kanamycin resistance cassette. Plasmids
carrying the same replication origin typically are not main-
tained together in the same cell (14), but plasmid incompati-
bility has not been extensively studied in B. burgdorferi (9, 35,
36). Therefore, pKFSS1 was also cotransformed with its pa-
rental plasmid pBSV2. Plasmids were electroporated into B.
burgdorferi, and cells were plated in semisolid medium contain-
ing both kanamycin and streptomycin, as described above. As
expected, transforming cells carrying pKFSS1 with pCE320
yielded colonies on plates with both kanamycin and strepto-
mycin, indicating that the cells contained both resistance cas-
settes. Surprisingly, colonies resistant to both kanamycin and
streptomycin were also obtained from cells carrying pKFSS1
transformed with pBSV2, although both plasmids carry the
same replication origin derived from the 9-kb circular plasmid
cp9 (35).

To test that these plasmids autonomously replicated in the
cotransformant clones, DNA was isolated using a Wizard Plus
Midipreps DNA purification system (Promega) and �7 �g was
loaded on a 1% agarose gel in 1� TAE (40 mM Tris–20 mM
acetate–1 mM EDTA) buffer. Electrophoresis and Southern
blotting to an Immobilon-Ny� membrane (Millipore) were
performed essentially as described previously (1, 10), except
the hybridization signal was detected using a FLA3000G ra-
dioisotope imaging system (Fuji film). The probes were ampli-
fied by two rounds of PCR using oligonucleotides aadA
F�NdeI and aadA R�AatII or oligonucleotides kanR 88F
(AATGTCGGGCAATCAGGTG) and kanR 488R (TCACT
CGCATCAACCAAACC), and labeled using a Prime-It II
random primer labeling kit (Stratagene). pKFSS1 and pCE320
differ in size, so they are readily resolved and detected in the
cloned transformants by ethidium bromide staining (Fig. 2A).
pKFSS1 and pBSV2 are similar in size, but they can be distin-
guished using either an aadA probe specific for pKFSS1 (Fig.

2B) or an aphI probe specific for pBSV2 and pCE320 (Fig.
2C).

Because pKFSS1 and pBSV2 carry the same origin of rep-
lication, we assayed plasmid compatibility by growing the co-
transformant in the presence or absence of both kanamycin
and streptomycin for 40 generations, as described above. Cells
were then plated in the absence of antibiotic or in the presence
of kanamycin, streptomycin, or both kanamycin and strepto-
mycin to assess the stability of pKFSS1 and pBSV2 (Table 3).
We expected that the same number of colonies would be ob-
tained on all four plates from cells grown in the presence of
antibiotics, which would maintain selective pressure on those
cells containing both plasmids. Interestingly, cells on plates
with streptomycin (either alone or with kanamycin) formed

FIG. 2. Plasmid compatibility of pKFSS1 with pBSV2 and pCE320.
A B. burgdorferi clone carrying pKFSS1 (6.1 kb; streptomycin resis-
tance) was cotransformed with either pBSV2 (6.4 kb; kanamycin re-
sistance) or pCE320 (8.1 kb; kanamycin resistance) and grown with
both kanamycin and streptomycin in semisolid medium. Plasmid DNA,
isolated from B. burgdorferi clones carrying pKFSS1 alone, pBSV2
alone, pKFSS1 and pBSV2, pCE320 alone, or pKFSS1 and pCE320,
was resolved by 1% agarose gel electrophoresis and visualized by
ethidium bromide staining (A). The positions of molecular mass mark-
ers (in kilobase pairs [kb]) are indicated to the left of the gel. The gel
was transferred to a nylon membrane and probed with either the
spectinomycin and streptomycin resistance (aadA) open reading frame
(B) or the kanamycin resistance (aphI) open reading frame (C). The
aadA probe cross-reacts to a small extent with pBSV2 and pCE320.

TABLE 2. Antibiotic susceptibility of B. burgdorferi clones
containing pBSV2 or pKFSS1

Plasmid
IC50 (�g ml�1)a

Streptomycin Spectinomycin Kanamycin Gentamicin

None 7 0.1 7 2
pBSV2 (aphI) 3 0.2 �1,400 6
pKFSS1 (aadA) 650 1.4 10 3

a The IC50 is the concentration of antibiotic that inhibits growth by 50%.

TABLE 3. Plating efficiencies in the presence of two antibiotics of a
B. burgdorferi clone carrying both pBSV2 (kanamycin resistance) and

pKFSS1 (streptomycin resistance) after 40 generations with or
without selection

Treatmenta

% of colonies compared to no antibioticb (
SEM)

Kanamycin Streptomycin Kanamycin and
streptomycin

With selection 95 (
1) 70 (
5) 79 (
8)
Without selection 93 (
12) 36 (
9) 27 (
11)

a Selection with kanamycin and streptomycin.
b Plates without antibiotics yielded a mean of 448 colonies (� 100%) from the

cultures grown for 40 generations with selection (both kanamycin and strepto-
mycin) and 379 colonies (� 100%) from the cultures grown for 40 generations
without selection.
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about 30% fewer colonies than cells on plates with kanamycin.
We speculate that cells carrying pKFSS1 have a lower plating
efficiency than cells carrying pBSV2, which may explain the
observed lower transformation efficiency of pKFSS1 (Table 1).
The mechanism for this lower plating efficiency is unknown
and unanticipated, considering the similarity of pKFSS1 and
pBSV2. Most cells grown in the absence of antibiotic main-
tained pBSV2. However, only about half the colonies were
obtained on plates containing streptomycin (selecting for
pKFSS1) from the cells grown without antibiotic compared to
cells grown with an antibiotic. This is consistent with the above
observation that pKFSS1 is not as stable as pBSV2. Several
colonies from the B. burgdorferi cotransformant grown without
antibiotic were isolated and assayed for plasmid DNA by trans-
formation of E. coli, as described above. All colonies contained
the expected plasmid(s) selected with the antibiotic(s) used for
plating (data not shown).

Conclusions. Molecular genetic manipulation in B. burgdor-
feri, though relatively immature, has finally advanced to the
stage where complex genetic studies can be conducted. Several
methods to introduce foreign DNA into B. burgdorferi have
been described, including electroporation (27, 29), transduc-
tion (10), and chemical transformation (12). Gene disruption
and complementation experiments, made possible by the de-
velopment of selectable markers (4, 12, 29, 31, 33) and shuttle
vectors (9, 31, 35), are now available for probing gene function
in B. burgdorferi.

We examined the ability of the aadA gene to confer specti-
nomycin and streptomycin resistance in B. burgdorferi. This
resistance gene functions in several bacteria, including Myxo-
coccus xanthus, another genetically challenging organism (19).
We demonstrated that a hybrid flgBp::aadA cassette provides
approximately 100-fold resistance to streptomycin in B. burg-
dorferi (Table 2) and allows for selection of streptomycin-re-
sistant transformants in semisolid medium. The aadA gene
with its native promoter confers low-level antibiotic resistance
(B. J. Kimmel, M. E. Kresge, and D. S. Samuels, unpublished
data). Spectinomycin-resistant B. burgdorferi arose at a high
frequency, regardless of whether they had been electroporated
with pKFSS1, pBSV2, or no DNA (Table 1). We were unable
to recover plasmid DNA from these spectinomycin-resistant
colonies, which suggests that they were naturally occurring
background mutants.

The ability to use streptomycin resistance as a selectable
marker adds significantly to the existing antibiotic-resistant
genes. Streptomycin is not clinically used to treat B. burgdorferi
infections in humans, and aadA does not have the potential for
homologous recombination into the B. burgdorferi genome.
Limitations imposed by the coumermycin A1 marker have re-
sulted in recent genetic studies relying on only the erythromy-
cin resistance and kanamycin resistance markers (10, 12, 15,
16, 18, 20, 23, 25, 32). flgBp::aadA does not confer cross-
resistance to either kanamycin or gentamicin (Table 2), allow-
ing this resistance cassette to be used in conjunction with
flgBp::aphI and flgBp::aacC1.

pKFSS1 is compatible with either pCE320 or pBSV2, even
though pKFSS1 and pBSV2 have the same cp9 origin of rep-
lication. The comaintenance of these two plasmids is surprising
because pBSV2 appears to displace the parental cp9 plasmid
(35). In addition, other B. burgdorferi plasmids with the same

replication origin and compatibility locus demonstrate plasmid
incompatibility (9, 35, 36). However, unlike the other larger B.
burgdorferi plasmids, cp9 does not encode a gene for a paralo-
gous family 32 (PF32) protein (6, 8, 35). PF32 proteins are
homologous to the ParA proteins that play a critical role in the
stable maintenance of several well-characterized plasmids, in-
cluding P1 and F (14). A number of factors, including copy
number and the absence of the ParA homolog, may contribute
to the maintenance of pBSV2 and pKFFS1 in the same B.
burgdorferi cell. Whatever the reason, compatibility of pKFSS1
with either pCE320 or pBSV2 enables experimental ap-
proaches that require introducing genes or regulatory se-
quences on two different vectors. flgBp::aadA and pKFSS1 add
an essential new capability to the genetic study of B. burgdorferi
by furthering techniques to complement mutants, simulta-
neously disrupt multiple genes, monitor several promoters, or
assay gene interactions.
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