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INTRODUCTION ical reaction, an Na ™" -transporting membrane ATP synthetase,

Most bacteria rely on proton motive force as a source of
energy for a variety of cellular processes. Usually, an H" cycle
includes generation of the transmembrane electrochemical
gradient of H* (proton motive force) by primary transport
systems (H* pumps) and its use for ATP synthesis, solute
transport, motility, reverse electron transport, etc. (reviewed,
for example, in references 76, 128, 185, and 186). A substantial
body of evidence indicates, however, that certain extremo-
philic, particularly alkalophilic and thermophilic, bacteria can
use Na™ as a coupling ion in an Na™ cycle instead of, or in
addition to, the H" cycle (47, 183-185, 188). As in the H"
cycle, a fully operational Na™ cycle would include a primary
Na™ pump that directly couples Na™ translocation to a chem-
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a number of Na™-dependent membrane transporters, and an
Na™-dependent flagellar motor. While certain Na*-dependent
functions, such as Na™-dependent uptake of melibiose, pro-
line, and glutamate, have been observed in many bacteria,
including Escherichia coli and Bacillus subtilis (23, 37, 128, 161,
219), the ion gradients that served as energy sources for these
transports have been generated by primary H" pumps and
converted to Na™* gradients by Na*/H™ antiporters (Fig. 1). As
a result, until very recently the Na™ cycle has been suspected in
many different bacteria but experimentally verified in only pre-
cious few of them, such as Vibrio alginolyticus, Propionigenium
modestum, and Clostridium fervidus (38, 39, 45, 188). Based on
their Na™ requirement for growth and Na™-dependent respi-
ration, Na™ cycling has been proposed in a number of marine
bacteria (148, 209; reviewed in reference 109). Here, by ana-
lyzing bacterial genomic sequences, including the recently pub-
lished complete genomes of Vibrio cholerae (83), Pseudomonas
aeruginosa (194), and Pasteurella multocida (131), we show that
the Na™ cycle may be common among human and animal
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FIG. 1. Proton and sodium ion cycles in bacterial energetics. “Pri-
mary pump” indicates any proton or sodium motive force generator
(e.g., respiratory ion pump, membrane ATPase, or a Na*-transporting
dicarboxylate decarboxylase). “H™ (or Na™) porter” indicates consum-
ers of proton (or sodium) motive force (symporters, flagellar motor,
etc.). The actual presence of partial components of both cycles in the
membrane of each particular bacterial species may vary, depending on
the physiological state of the cell. Na*/H™ antiporters convert proton
motive force into sodium motive force and vice versa, playing an
important role in cell homeostasis.

pathogens and we discuss its potential role in their virulence.
Due to its emphasis on genome analysis, this review does not
aim to cover detailed biochemical properties of the Na™-de-
pendent systems, which have been extensively reviewed previ-
ously (48, 50). Properties of membrane transporters, including
Na*-dependent ones, have been reviewed by Saier and co-
workers (156, 169-171); recently, an analysis of the distribution
of various transporters in the first 18 sequenced microbial
genomes has been published (155). An extensive review of the
type III protein secretion systems in various bacterial patho-
gens (93) included brief characterizations of the pathogens
involved, some of which are subjects of this review.

PRIMARY Na* PUMPS

Na*-Transporting Dicarboxylate Decarboxylases

The first evidence of an Na™ cycle in bacteria came from the
discovery that decarboxylation of oxaloacetate in the anaerobic
bacterium Propionigenium modestum was Na™ dependent and
was coupled to the extrusion of Na* ions from the cytoplasm
into the medium (41). In this way, the cells were able to
conserve part of the free energy released during the exergonic
decarboxylation reaction

~“O0C-CH,-CO-COO™ +H"—CO0,+CH;-CO-COO",
AG® = —20kJ/mol

in the form of a transmembrane gradient of Na™ ions (50).
Further studies of oxaloacetate decarboxylase and similar bio-
tin-dependent membrane-bound decarboxylases have shown
that active export of Na™ ions can also be driven by decarbox-
ylation of malonate, methylmalonyl coenzyme A (methylma-
lonyl-CoA), and glutaconyl-CoA. These energy-conserving
“dicarboxylate decarboxylases,” functioning as primary Na™
pumps, have been found in a number of bacteria that grow
anaerobically on saturated dicarboxylic acids, such as Klebsiella
aerogenes, Veillonella alcalescens, Propionigenium modestum,
Malonomonas rubra, Salmonella enterica serovar Typhimu-
rium, and Acidaminococcus fermentans (18, 41; reviewed in
references 43, 44, 47, and 48). Na* gradients, generated by
these enzymes, could be used for ATP synthesis and active
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transport (42, 160). Na™ gradient-driven ATP synthesis, re-
ferred to as decarboxylation phosphorylation, is the only ATP-
generating mechanism in P. modestum and M. rubra (49, 85).
Genetic and enzymological analysis showed that the Na™-
transporting oxaloacetate decarboxylase enzyme consists of
just three subunits, alpha, beta, and gamma, encoded in the
0adGAB operon (51, 120). Malonate, methylmalonyl-CoA,
and glutaconyl-CoA decarboxylases have a more complex or-
ganization but also contain alpha and beta subunits, homolo-
gous to the alpha and beta subunits, respectively, of oxaloac-
etate decarboxylase (12, 17, 18, 91, 92). Inspection of complete
microbial genomes finds conserved oadAB operons (or, in
some cases, separate oadA and oadB genes) in a number of
phylogenetically distant (Fig. 2) bacteria, from the anaerobic
hyperthermophile Thermotoga maritima to such human patho-
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FIG. 2. Phylogenetic distribution of the bacterial pathogens that
use the Na* cycle. The dendrogram shows the taxonomic positions of
the organisms with completely sequenced genomes and several patho-
gens discussed in the text, according to the NCBI Taxonomy database
(http://www.ncbi/nlm.nih.gov/Taxonomy) (218). The branches indicate
taxonomic relations only; their lengths do not necessarily reflect evo-
lutionary distances. The main bacterial phyla are shown in boldface.
Bacterial species that appear to utilize the Na™ cycle are shaded.
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gens as Salmonella enterica serovar Typhi, and Treponema pal-
lidum (Table 1). One could argue whether these data should be
interpreted as evidence either of the ancient origin of this
enzyme or of its propensity to be horizontally transferred
among different bacterial phyla. The latter possibility seems
quite plausible, since acquisition of the oadGAB operon would
provide the bacterium with the ability to generate membrane
potential at the expense of a fairly simple chemical reaction,
which should be of selective advantage under some conditions.
In any case, Na™ gradient generation by decarboxylase-cou-
pled ion transfer appears to occur in a limited number of
(mostly) anaerobic bacteria, making it an exception rather than
a rule in microbial world.

Na*-Transporting NADH Dehydrogenase

Shortly after the discovery of the Na™-transporting oxalo-
acetate decarboxylase, a respiratory Na* pump, the Na™-trans-
locating NADH:ubiquinone oxidoreductase (NQR), was re-
ported in a marine bacterium, Vibrio alginolyticus (202, 204).
Similar Na*-transporting respiratory pumps have since been
found in other Vibrio spp., Alcaligenes spp., Bacillus spp., and
even Escherichia coli (8, 110, 206). In contrast to dicarboxylate
decarboxylases, which appear to function mostly in anaerobes,
NQR is the dedicated Na* pump in aerobic bacteria (see
references 44 and 48 for reviews). After the genes encoding the
V. alginolyticus pump were cloned and sequenced (10, 79, 80),
homologous ngrABCDEF operons were found in Haemophilus
influenzae, Vibrio cholerae, and Vibrio harveyi (77, 82, 228). The
availability of complete microbial genome sequences allowed
the identification of homologous genes encoding the NOR in a
wide variety of bacteria, from E. coli to Chlamydia trachomatis
(190, 192, 228) (Table 1). Remarkably, this enzyme is encoded
even in the genome of the aphid symbiont Buchnera sp. strain
APS, the second smallest of all known bacterial genomes
(179). Our analysis of unfinished genome sequences, avail-
able through the web sites of the Sanger Centre (http:/www
.sanger.ac.uk). The Institute for Genomic Research (TIGR)
(http://www.tigr.org), and the National Center for Biotechnol-
ogy Information (http:/www.ncbi.nlm.nih.gov/BLAST), showed
that the ngr operon is widely distributed in bacteria, including
such important pathogens as Neisseria gonorrhoeae, Pasteurella
multocida, Porphyromonas gingivalis, and Yersinia pestis (Table
1). The deduced protein products encoded by these operons
display a significant degree of sequence conservation (typically,
more than 25% identity). Among the sequenced genomes,
there is no deviation from the V. alginolyticus gene order in
V. cholerae, H. influenzae, Neisseria meningitidis, and Pseudo-
monas aeruginosa (Table 1). In Thermotoga maritima, the gene
order is the same, but the ngrF gene, encoding the beta subunit
of the enzyme, is replaced by a gene encoding a different Fe-S
center-containing protein (referred to as ngrG in Table 1). In
E. coli and Buchnera sp., nqrE and nqrG precede the other four
genes instead of following them. This gene order is the same as
in the previously described mfABCDEF (Rhodobacter nitrogen
fixation) operon from Rhodobacter capsulatus (173). Indeed,
sequence comparisons show that the mfA4 gene is homologous
to ngrE, the mfCDEF genes are homologous, to ngrABCD, and
mfB corresponds to ngrG. This observation shows that the
terminal acceptor of electrons from quinone reduction, cata-
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lyzed by NQR, does not necessarily need to be oxygen; it can
be nitrate or even 2,4-dinitrophenol (168). In addition, NOR
can catalyze reverse electron transport from quinol to NAD™
(see below). This would explain the presence of the NQR in
Thermotoga maritima, an obligate anaerobe (141). Similar
nqrEGABCD operons (in addition to ngrABCDEF operons)
are present in the genomes of V. cholerae, H. influenzae, and
P. aeruginosa (Table 1); the reason why these organisms should
have two copies of the ngr genes is unclear. Finally, in Chla-
mydia trachomatis and C. pneumoniae, the nqrA and ngrF genes
are located separately from the ngrBCDE operon (Table 1).

Na*-Transporting ATPases

There appear to be two major classes of ATP-dependent pri-
mary Na™ pumps that are capable of generating Na™ gradients
at the expense of ATP hydrolysis. One of them is an ABC (ATP
binding cassette)-type transporter, NatAB, recently character-
ized in Bacillus subtilis (26). Similar Na™-transporting ATPases
are encoded in B. firmus (215) and in the genomes of Dei-
nococcus radiodurans, Thermotoga maritima, Clostridium dif-
ficile, and Legionella pneumophila. However, the primary (if
not the only) function of this Na™ pump appears to be in
prevention of Na™ toxicity, that is, accumulation of Na™ in the
cytoplasm at the levels that would impair the normal cell func-
tions (26, 215). Short of that, ATP expenditure for Na™ export
would be just too costly for cellular metabolism. Indeed, since
the intracellular concentration of H™ ions is approximately
10°-fold lower than the concentration of Na* ions (1077 to
1073 M versus 10~" to 10”2 M), it takes many fewer ATP
molecules to create a 10°-fold gradient of H" ions than of Na™
ions, even taking into account the buffering capacity of the
cytoplasm (182). As a result, for ATP-dependent uptake of
nutrients, bacterial cells use ABC-type transporters rather than
mediating it by ATP-dependent generation of the Na™ gradi-
ent (155).

Na*-transporting ATPases of the second class are simply
F,F,-type and archaeal/vacuolar-type (V-type) ATP syntheta-
ses working in the reverse direction. Surprisingly, Na*-trans-
porting F F;-type ATP synthetases are remarkably similar to
the H" -transporting ones (48). In fact, the cation specificity of
an F(F,-type ATP synthetase can be switched just by several
amino acid changes in the a or c¢ subunits of its membrane
component (101, 227). The same appears to be true for V-type
ATPases that are also found in Na*-transporting and H*-
transporting variants (89). It is clear that these enzymes are
capable of Na™ extrusion (89, 102, 103, 142). However, due to
the huge energy costs of this process (see above), it would seem
unlikely to be their function under natural conditions. Indeed,
expression of the Na*-transporting V-type ATPase of Entero-
coccus hirae is induced only by high pH or by high levels of
intracellular Na™ (94, 136). It therefore appears that bacterial
cells spend ATP on Na™ excretion only under extreme condi-
tions, when it is necessary for their survival.

Recently, a P-type Na*-transporting ATPase has been found
in the facultatively anaerobic alkalophilic gram-positive bacte-
rium Exiguobacterium aurantiacum (207). Previously, P-type
ATPases in bacteria were not known to transport Na™, as
opposed to the eukaryotic Na™/K™ ATPase. If true, this would
be an interesting example of the diversity of Na™-transporting
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ATPases in bacteria. A mutation in the P-type K™ -transporting
ATPase KdpFABC of E. coli has recently been shown to result
in low-level Na™ transport (174).

Na™*-Transporting Terminal Oxidases

There have been reports that the cytochrome d terminal
oxidase of E. coli is not an H* pump (162) but a Na™ pump (6,
8, 15, 135). An Na™-transporting terminal oxidase has also
been found in a representative of the genus Bacillus (8, 115,
178), later identified as Bacillus halodurans (71). Those reports
still remain unconfirmed, even though cytochrome d-type ter-
minal oxidases are encoded in genomes of many organisms,
including such Na™ cycle-dependent ones as E. coli, P. aerugi-
nosa, V. cholerae, H. influenzae, C. trachomatis, and C. pneu-
moniae (Table 2). On the other hand, very similar cytochrome
d-type oxidases are encoded in the genomes of B. subtilis,
Synechocystis spp., Campylobacter jejuni, and Rickettsia prowaze-
kii, which do not seem to encode any (other) Na™ pumps
(Table 1) or require Na* for growth. It is possible also that
cytochrome d-type oxidases do not pump either Na* or H*
and charge the membrane solely by consuming H* ions from
the cytoplasm to produce H,O (162). Due to this uncertainty,
we do not count cytochrome d-type enzymes as primary Na™*
pumps (Table 1) but, rather, tentatively consider them to be
H" pumps (Table 2).

Because the cytochrome bo-type type terminal oxidase of
E. coli has been directly demonstrated to be an H* pump (162,
163), similar enzymes in other bacteria are generally assumed
to be specific to H* ions. However, in Vitreoscilla, a beta-
subdivision proteobacterium that belongs to the Neisseriaceae
family, cytochrome o has been repeatedly shown to function as
a primary Na™ pump (55, 56, 108, 152). Because the sequence
of this Na™-transporting cytochrome o is still not available, it is
difficult to judge how unusual it is and whether other bacteria
might also be able to utilize cytochrome o complexes as Na™
pumps. It is remarkable that Neisseria gonorrhoeae and N. men-
ingitidis, closely related to Vitreoscilla spp., do not encode cyto-
chrome o complexes; instead, their terminal oxidases are of the
cbb; type (Table 2).

Cytochrome ¢ oxidases of the cbb;- type are found primarily
in microaerophiles, such as Neisseria spp., Helicobacter pylori,
and C. jejuni (129, 187). This enzyme complex translocates H"
ions across the membrane (33, 164, 205). The possibility that
this complex could (also) pump Na™ ions has not been inves-
tigated.

Na™-Transporting Methyltransferase

Yet another type of primary Na™ pump, found in methano-
genic archaea, couples Na™ export to methyl group transfer
from tetrahydromethanopterin to CoM (see reference 35 for a
recent review). No such enzyme has been reported in any
bacteria.

UTILIZATION OF Na* GRADIENTS

Once the chemical energy is transformed into the electro-
chemical energy of the Na™* gradient, it can be used to drive
ATP synthesis, Na*-dependent transports, and Na™-depen-
dent motility.
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Na*-Dependent ATP Synthesis

In contrast to ATP-dependent Na* transport, which has
been demonstrated in a number of organisms (40, 118), Na™*-
dependent ATP synthesis requires a relatively large Na™ gra-
dient and probably occurs only in a few bacteria. Such a reac-
tion was first reported in Propionigenium modestum, one of the
few organisms that appear to be exclusively dependent on the
Na™ cycle (46, 85). Shortly thereafter, ATP synthesis in re-
sponse to an artificially imposed Na™* gradient was demon-
strated in V. alginolyticus and E. coli (7, 39). In each of these
bacteria, Na*-dependent ATP synthesis was catalyzed by a
typical F,F,-type ATPase originally thought to be an exclusive-
ly H*-transporting enzyme. It transpired that the cation spec-
ificity of this enzyme was not absolute and could be changed by
mutations (100, 119, 227). As a result, there is currently no
clear way to predict the cation specificity of a given F F;-type
ATPase from its sequence, even taking into account the latest
data identifying some potentially important residues (53, 100,
101). One could safely assume, though, that under conditions
of low proton motive force and high sodium motive force a
normally H*-transporting F,F,-type ATPase may function as
an Na ™" -transporting ATP synthetase. Hence, the ability to gen-
erate an Na* gradient through any primary Na™ pump could
be considered an important trait, helping the organism to syn-
thesize ATP and ultimately survive under certain unfavorable
conditions.

An analysis of ATP synthesis in microorganisms that encode
an archaeal/vacuolar type (V-type) ATPase is similarly unable
to determine the selectivity of the enzyme toward Na™ and H*
ions. It is particularly interesting to compare the two spiro-
chetes Treponema pallidum and Borrelia burgdorferi, the caus-
ative agents of syphilis and Lyme disease, respectively, which
both have V-type ATPases encoded by similarly organized
operons (66). While T. pallidum has a primary Na™ pump
of the oxaloacetate decarboxylase type (Tables 1 and 2) and
conceivably could utilize an Na™ gradient for ATP synthesis,
B. burgdorferi does not encode any known Na* pumps and
appears to rely solely on the H" cycle.

Na*-Dependent Symports

Obligately parasitic bacteria generally have smaller genomes
than free-living ones and may depend on their hosts for essen-
tial nutrients such as amino acids, nucleobases, and cofactors
(vitamins) (66, 113, 114). These nutrients are transported into
the cell at the expense of energy that comes in the form of
either ATP (ABC-type transport systems) or proton (and/or
sodium) motive force (secondary transport). The diversity of
bacterial transport systems encoded in complete microbial ge-
nomes varies widely but generally correlates with the genome
size (155, 156). It has long been known that Na™ symports are
the principal, and sometimes the only, form of secondary trans-
porters in alkalophilic and thermophilic bacteria (84, 189). The
presence of primary Na* pumps in many pathogens (Table 1)
indicates that they, too, could use sodium motive force for
solute uptake. Indeed, most of them encode Na™-dependent
symporters for alanine, proline, and several other amino acids
(Table 2).

While substrate specificity of many permeases encoded in
microbial genomes is not known, it can often be predicted, at
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FIG. 3. Domain organization of a new type of sensor histidine
kinases. SMART (175) diagrams of the common domain structure V.
cholerae protein VC0303 and P. aeruginosa proteins PA3271 and
PA4725 (A) and R. prowazekii protein RP465 (B). (A) The small open
box on the left indicates the likely signal peptide, predicted by the
SignalP program (144). The vertical boxes indicate 12 transmembrane
helices of the solute/sodium symporter family (TC 2.A.21) transporter,
predicted by the TopPred program (29). The circle indicates the PAS
domain (198); the two hexagons indicate the phosphoacceptor and
ATPase domains, respectively, of the histidine kinase; and the dotted
square on the right indicates the CheY-type receiver domain (193). (B)
R. prowazekii protein RP465 contains 16 predicted transmembrane
helices and both domains of a histidine kinase but lacks PAS and
CheY-type domains. The ruler indicates the length of the protein in
amino acid residues.

least in general terms, using the protein family assignment
based on the recently developed transporter classification (TC)
(see reference 170 for a review). Certain transporter families
include both Na™-dependent and H*-dependent members.
For example, the branched-chain amino acid/cation symporter
family (LIVCS; TC 2.A.26) includes both an Na"-dependent
transporter, BraB, from Pseudomonas aeruginosa and an H™ -
dependent transporter, BrnQ, from Lactobacillus delbruckii
(90, 195). However, analysis of permeases that belong to con-
served families of transporters shows that in most cases, the
cation specificity stays the same throughout the family (166).
Reizer et al. have identified 11 conserved protein families of
(mostly) Na™/solute symporters that comprised the sodium
solute symporter superfamily (166). So, although the exact
substrate specificity of most permeases encoded in microbial
genomes is still obscure, the pathogens that utilize the Na™
cycle (Table 2) seem to encode a significant share of permeases
that belong to Na"-dependent transporter families (155).

One such conserved family, the solute/sodium symporter
family (SSS; TC 2.A.21) unifies the experimentally character-
ized Na™/proline and Na™/pantothenate permeases PutP and
PanF from E. coli (165) with the Na™/glucose symporter SgIT
from V. parahaemolyticus (170). Homologous transporters
are encoded in the genomes of P. gingivalis, C. pneumoniae,
C. difficile, N. meningitidis, N. gonorrhoeae, P. multocida, H. in-
fluenzae, H. ducreyi, A. actinomycetemcomitans, K. pneumoniae,
P. aeruginosa, S. enterica serovars Typhi and Paratyphi, V. chol-
erae, and Y. pestis (Table 2). All these proteins are likely to
function as Na*-dependent symporters, although some of them
contain additional domains similar to sensory kinase compo-
nents of signal transduction systems and may be involved in
signal transduction. For instance, in Rickettsia prowazekii pro-
tein RP465, V. cholerae protein VC0303, and P. aeruginosa
proteins PA3271 and PA4725, putative members of the solute/
sodium symporter family are fused to PhoR-like sensory kinase
domains (Fig. 3). The signal transduced by these proteins, if
any, has not been identified.

Another conserved family of Na*-dependent transporters,
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identified by Reizer et al. (166), includes experimentally char-
acterized alanine and glycine transporters from the marine
bacterium Alteromonas haloplanktis and the thermophilic bac-
terium PS3 (105). Proteins belonging to this family (AGCS; TC
2.A.25) and probably involved in the uptake of alanine and/or
glycine are found in many bacteria, including most human
pathogens (Table 2).

Glutamate, aspartate, serine, and threonine also can be tak-
en up by bacterial cells by an Na* symport mechanism. The
Na*/glutamate symporter GItS from E. coli remains the only
characterized member of the glutamate/sodium symporter
family (ESS; TC 2.A.27). Members of this family in other bac-
teria can be assumed to have the same narrow substrate spec-
ificity (Table 2). The Na™/serine-threonine symporter, SstT,
from E. coli belongs to the diverse family of transporters
(DAACS; TC 2.A.23) that also includes Na™- and H*-depen-
dent symporters for glutamate and dicarboxylic intermediates
of the Krebs cycle. Members of this family are widely repre-
sented in bacterial genomes (156). Unfortunately, their exact
substrate and cation specificity is still difficult to establish based
solely on sequence comparisons.

Members of the citrate/cation symporter family (CCS; TC
2.A.24) are involved in Na*-dependent uptake of such 2-
hydroxycarboxylates as citrate, malate, and lactate (211, 212).
Some of these permeases reportedly can also transport citrate
or malate in symport with H" ions (130). Actually, the true
substrate of the Na*/citrate symporter CitS, best studied in
Klebsiella pneumoniae, appears to be the protonated (divalent)
form of citrate, transported in symport with two Na™ ions.
Thus, technically, CitS is an H*/2Na™/citrate symporter (52,
211). In K. pneumoniae, S. enterica serovar Typhimurium, and
several other bacteria, CitS catalyzes the first stage of anaer-
obic citrate fermentation pathway. In this remarkable Na™-
dependent pathway, citrate is first transported into the cell at
the expense of the Na™ gradient (Fig. 4) and then split into
acetate and oxaloacetate by citrate lyase (16). Decarboxylation
of oxaloacetate into pyruvate by the Na™-transporting oxaloa-
cetate decarboxylase restores the Na™ gradient and produces
pyruvate, which is further metabolized into acetate with acetyl-
CoA and acetyl phosphate as intermediates (16). The last stage
of this pathway, catalyzed by acetate kinase, yields ATP and
thus results in energy conservation. Based on the presence of
genes encoding both CitS-type carrier and oxaloacetate decar-
boxylase (Table 2), such a pathway can be assumed to function
in Treponema denticola, V. cholerae, S. enterica serovars Typhi
and Paratyphi, and, possibly, Streptococcus pyogenes. Not sur-
prisingly, in K. pneumoniae, V. cholerae, and S. enterica serovar
Typhi, the genes for the Na™/citrate symporter and oxaloac-
etate decarboxylase are located within a single operon (16)
(Table 1).

Na™-Dependent Drug Efflux

Drug resistance of human pathogens is a growing problem,
threatening to negate the success of the antibacterial efforts of
the last 50 years and make humans once again vulnerable to a
siew of infectious diseases. Comparative genomics is being
widely used for identification of potential drug targets (2, 65,
172). The recurring problem in drug design, however, is the
presence of multidrug efflux pumps that excrete a wide variety
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FIG. 4. Scheme of the Na*-dependent citrate fermentation path-
way. Citrate is transported into the cell in symport with Na* ions by
CitS (step 1) and split into acetate and oxaloacetate by citrate lyase
CitDEF (step 2). Decarboxylation of oxaloacetate into pyruvate by
Na™-transporting oxaloacetate decarboxylase, OadGAB (step 3), re-
stores the Na* gradient and produces pyruvate. Pyruvate-formate
lyase PfID splits pyruvate into formate and acetyl-CoA (step 4), which
is further converted into acetylphosphate by phosphotransacetylase
Pta (step 5). Dephosphorylation of acetylphosphate by acetate kinase
AckA (step 6) yields ATP, resulting in energy conservation. The en-
zymes are indicated by their standard gene names, where available.
The fermentation end products are boxed. See reference 16 for more
details.

of compounds, decreasing their cellular concentrations below
the required MICs (122, 123, 154). Indeed, preventing drug
efflux significantly increases the efficacy of even standard anti-
biotics, such as streptomycin and tetracycline (121, 191). Most
of the known multidrug efflux pumps belong to one of three
groups of secondary transporters, typically energized by the
protonmotive force: the major facilitator superfamily (MFS;
TC 2.A.1), the small multidrug resistance family (SMR; TC
2.A.7.1), and the resistance/nodulation/cell division family
(RND; TC 2.A.6) (154). Several other groups of multidrug
transporters belong to the ATP-dependent ABC superfamily
(ABC; TC 3.A.1). Recently, a multidrug transporter, NorM,
from V. parahaemolyticus that caused Na™-dependent efflux of
norfloxacin has been described (133, 134). NorM turned out to
be a representative of a new large family of multidrug efflux
pumps (20, 134), termed the multiantimicrobial extrusion fam-
ily (MATE; TC 2.A.66). Members of this family are encoded in
almost every sequenced genome, including nearly identical
NorM proteins in V. cholerae, E. coli, H. influenzae, and P. aeru-
ginosa. Close homologs of NorM are also found in S. enterica
serovars Typhi and Paratyphi, K. pneumoniae, A. actinomyce-
temcomitans, P. multocida, H. ducreyi, and Y. pestis (Table 2).
While it is still too early to speculate, which members of this
family of transporters are Na* dependent and which, if any,
are H dependent, there is little doubt that the sodium motive
force can serve as an energy source for drug efflux pumps in a
number of bacterial pathogens.
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Reverse Electron Transport

The presence of ngr genes in the genomes of anaerobic
microorganisms, including the obligately anaerobic hyperther-
mophile Thermotoga maritima (Table 1), indicates that NQR
can also work in the reverse direction, using the energy of the
Na™ gradient to reduce NAD" to NADH. Indeed, Na™-de-
pendent NAD™ reduction by formate has been experimentally
demonstrated in K. pneumoniae grown anaerobically on citrate
(157). This reaction was sensitive to the quinone analog 2-hep-
tyl-4-hydroxyquinoline N-oxide (HQNO), a well-characterized
inhibitor of NQR. For K. pneumoniae, Na*-dependent reverse
electron transport could help to produce reducing equivalents,
needed for assimilation of the formate formed in the anaerobic
citrate fermentation pathway (see above) (Fig. 4).

Na™*-Dependent Motility

Motility is widely believed to be an important virulence
factor in bacterial pathogens, since it allows the bacterium to
penetrate different host tissues and/or helps it to attach to the
surface of epithelial cells (86, 107, 132, 222). Indeed, loss of
motility has been reported to correlate with significant de-
crease of virulence in host-parasite models for H. pylori, V.
cholerae, Y. enterocolitica, and other bacteria (72, 98, 150, 225).

Many bacterial pathogens that depend on an Na™ cycle
(Table 2) are motile. Their genomes contain the full set of ca.
30 genes that are required for the formation of a functional
flagellum (126). For several of them, motility has been directly
shown to be Na™ dependent (5, 14, 78, 111). In V. parahaemo-
Iyticus and V. alginolyticus, lateral and polar flagella are report-
edly powered by proton motive force and sodium motive force,
respectively (5, 14, 111). Some components of the Na™-depen-
dent motor can be functionally replaced by homologous com-
ponents of the H*-dependent motor (3, 68). Uncovering the
details of the organization of the Na*-dependent motors of
V. cholerae and related bacteria is quite important, because it
could clarify the contribution of motility to their pathogenicity.

Is the Na* Gradient Involved in Toxin Export?

The contribution of the flagellar genes to virulence is not
limited to the colonization stage of infection. The flagellar
export apparatus, which is responsible for the secretion and
assembly of a functional organelle, participates in the secretion
of a variety of virulence factors, including certain bacterial
toxins (reviewed in references 30, 62, and 93). This toxin export
apparatus is referred to as a type III protein secretion system
and participates, for example, in secretion of extracellular pro-
teins by Y. enterocolitica, including the virulence-associated
phospholipase YplA (226). Because the flagellar export system
traverses the cytoplasmic membrane, the peptidoglycan layer,
and the outer membrane, proteins exported via this system can
be delivered directly to the exterior and may even penetrate
the cytoplasm of the host cell (93). The energy for this complex
process is apparently supplied in the form of ATP and is used
by the ATPase Flil, which is homologous to the catalytic beta
subunit of the F,F,-type H"-ATPase (58, 93). Genome com-
parisons show that genes encoding type III protein secretion
systems have a wider phylogenetic distribution than the rest of
the flagellar genes; they can be found even in such nonmotile
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organisms as C. frachomatis and C. pneumoniae (143, 190). It is
important to note here that in a motile cell, a significant part of
the flagellar apparatus (“rotor”) rotates together with the
flagellar filament relative to the remainder of the flagellar
machinery (“stator”) and the rest of the cell, providing torque
that propels the bacterium (11, 126). Remarkably, homologs of
the FIiF protein that forms the two membrane rings (M and S)
of the rotor, i.e., the flagellar motor switch protein FliG, lo-
cated at the interface between the rotor and the stator, and the
FliN protein, which forms the inner (cytoplasmic) ring of the
rotor (149, 200, 208), appear to be involved in the functioning
of the export machinery in several bacterial pathogens (93). In
Y. enterocolitica and Y. pestis, these homologs of FliF, FliG, and
FliN, referred to as YscJ, YscD, and YscQ, respectively (SctJ,
SctD, and SctQ according to the new nomenclature suggested
by Hueck), are encoded on large virulence plasmids that en-
code both components of the export machinery and secreted
virulence proteins. These observations suggest that SctD, SctQ,
and particularly Sct] might be able to rotate in the membrane.
Unfortunately, the relation, if any, between the proper func-
tioning of the flagellar export machinery and its rotation re-
mains unknown. Early work on the role of proton motive force
in the elongation of the flagellar filament suggested that flagel-
lar rotation might be needed for flagellin export in E. coli (63).
It is tempting to speculate that Na*-dependent rotation of the
basal body might be related to the secretion of virulence pro-
teins, either promoting or impeding it. This idea, however, is
far from having any experimental support.

INTERPLAY OF Na* AND H* CYCLES
IN BACTERIAL PATHOGENS

The presence of genes encoding primary Na* pumps in a
number of important human pathogens (Table 1) indicates
that these bacteria rely on the Na* cycle for at least part of
their energy metabolism. However, in addition to a primary
Na™ pump, it appears that most of them encode primary H*
pumps (Table 2). Although one cannot be sure that every
primary Na™ pump and H* pump has been accounted for, we
can judge whether a particular microorganism uses the Na™
cycle based on the presence of any of the two proven primary
Na® pumps, NOR and dicarboxylate decarboxylases. In any
case, most genomes encode multiple Na*/H™ antiporters (Ta-
ble 2), which should allow the generation of an H* gradient at
the expense of an Na™ gradient and vice versa (see Fig. 1). This
(at least partial) interchangeability of proton motive force and
sodium motive force is a striking feature of the bioenergetics of
nearly all bacteria studied to date. In the following section we
consider the possible role(s) of Na™ cycle in the energy me-
tabolism of several potentially Na™*-dependent bacterial patho-
gens in more detail.

Treponema pallidum and T. denticola

T. pallidum, the causative agent of syphilis, has remained
quite an enigmatic organism even after its genome was com-
pletely sequenced (61, 217). It still cannot be continuously
cultivated in vitro, and a syphilis vaccine remains elusive (181).
An analysis of the genome sequence of T. pallidum showed
that this organism encodes a very limited number of biosyn-
thetic pathways for amino acids, nucleotides, and cofactors,
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which partly explains its complex growth requirements (61). A
recent analysis of the protein set of 7. pallidum revealed a
number of organism-specific gene products whose exact bio-
logical role remains unclear (196, 217). An analysis of the
energy metabolism of 7. pallidum (Table 2) reveals a stunning
picture. This organism does not appear to encode any primary
H™" pumps or Na*/H" antiporters, and oxalate decarboxylase
seems to be the only ionic pump encoded in its genome. The
apparent absence of respiratory ionic pumps is quite unex-
pected, since T. pallidum is a microaerophile rather than an
obligate anaerobe and should be routinely attacked by super-
oxide radicals generated by the host defense systems; it even
has a dedicated superoxide reductase (125, 217). It seems likely
that “decarboxylation phosphorylation,” i.e., ATP synthesis at
the expense of the Na ™ gradient generated by oxalate decarbox-
ylation (48, 50), serves as a major energy source for 7. palli-
dum. The only peculiarity of this process in T. pallidum is that
its ATP synthetase is of the archaeal/vacuolar type, very similar
to the Na™*-transporting V-type ATPase of Enterococcus hirae
(66). As was noted above, solute uptake, energized by ion
gradients that have been generated at the expense of ATP, is
energetically costly. Indeed, T. pallidum mostly relies on ABC-
type transporters for solute uptake (155). The apparent ab-
sence of Na*/H™" antiporters suggests that the T. pallidum cell
must tightly balance its H* ion fluxes, i.e., the proton motive
force-dependent solute uptake with proton motive force-gen-
erating efflux of fermentation products. Such a mechanism of
proton motive force generation has been previously demon-
strated in Streptococcus cremoris (112). Another possibility, of
course, is that T. pallidum exclusively uses Na™ as a coupling
ion. A survey of the secondary transporters encoded in the
T. pallidum genome (155) appears to support this possibility.
Most of them either are Na* symporters or belong to the
families of transporters that can be powered by either Na™ or
H™ gradients. The former group includes predicted the Na™*/
alanine symporters TP0414 and TP0998, the Na™/branched-
chain amino acid symporter TP0265, the Na*/phosphate sym-
porter TP0771, and the Ca?*/Na™* antiporter TP1034 (155,
197), (Table 2). Most other T. pallidum permeases have un-
known specificity and can be characterized only using trans-
porter protein family assignment (170). This group includes
TP0023, a member of the neurotransmitter/sodium symporter
family (TC 2.A.22); TP0106, a member of the betaine/carni-
tine/choline transporter family (TC 2.A.15); TP0555 and TP0934,
members of the dicarboxylate-amino acid/cation symporter
family (TC 2.A.23); and TP0901, a member of the multiantimi-
crobial extrusion family (TC 2.A.66). While the exact substrate
and coupling-ion specificities of the transporters in this second
group are still obscure, some or all of them use Na™ gradient
as the energy source.

The genome of T. denticola, a close relative of T. pallidum,
is currently being sequenced at TIGR with support from the
National Institute of Dental and Craniofacial Research (see
http://www.nidr.nih.gov for more details). The currently se-
quenced part of T. denticola genome encodes an Na™ pump,
but here it is NQR, not an oxaloacetate decarboxylase, as in
T. pallidum (Table 2). This contrast between the two spiro-
chetes could be due to a higher availability of oxygen in the
oral cavity, which is the ecological niche of T. denticola. The ab-
sence of the NQR in T. pallidum then probably reflects the loss
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of ngr genes in the course of its adaptation to its own ecological
niche. Indeed, it still encodes distant homologs of the NqrA
and NqrB subunits in TP0152 and TP0151. In addition to
NOQR, T. denticola encodes NAD*/NADP™ transhydrogenase,
a proton motive force generating-enzyme, an Na™/H™ anti-
porter, and several Na™- or H"-dependent transporters (Table
2). It is possible, of course, that NQR in T. denticola is func-
tioning in the reverse direction and is used for Na*-dependent
NAD™ reduction, as discussed above. Nevertheless, the fact
that both Treponema spp. retain primary Na™* pumps supports
the idea that they are dependent on the Na™ cycle for at least
part of their membrane energetics.

Chlamydia trachomatis and C. pneumoniae

Both C. trachomatis and C. pneumoniae are extremely im-
portant pathogens. In addition to being the causative agent of
trachoma, an eye infection that may lead to blindness, C. tra-
chomatis is one of the most common pathogens of human
genital tract (190). C. pneumoniae is a common cause of infec-
tions of the respiratory tract and can be found in many other
organs; it appears that virtually every human is infected with
C. pneumoniae at least once (69). Probably the most intriguing
aspect of C. pneumoniae pathogenicity is its apparent involve-
ment in the development of atherosclerosis (see references 22
and 69, and other reviews in the special issue of the Journal of
Infectious Diseases, Vol. 181, Suppl. 3; June 2000). The enticing
perspective of using antibiotics to prevent or treat coronary
artery disease adds some urgency to the task of understand-
ing the basics of chlamydial physiology. Recently, genome
comparisons were used to identify the unusual DhnA-type
fructose-1,6-bisphosphate aldolase as a potential target for a
chlamydia-specific “magic bullet” (64). Genome analysis also
shows that both C. trachomatis and C. pneumoniae encode a
primary Na™ pump, NQR (190) (Table 1). They have another
potential ion pump in cytochrome d-type terminal oxidase, but,
as discussed above, the mechanism and energy yield of a cyto-
chrome d complex remains unclear. Like Treponema spp.
chlamydias have an H*- (or Na™)-transporting V-type ATPase,
which turns out to be common in bacteria (66). Another sim-
ilarity between these two phylogenetically very distant groups
of bacteria is in the organization of their transport systems,
which is probably due to their common reliance on the Na™
cycle. Like T. pallidum, each of the two chlamydias encodes
two predicted Na™"/alanine symporters (CT409 and CT735 in
C. trachomatis, CPn0876 and CPn0536 in C. pneumoniae),
an Na™/branched-chain amino acid symporter (CT554 and
CPn0836), and an uncharacterized transporter of the neuro-
transmitter:sodium symporter family (CT231 and CPn0290)
(155, 197). On the other hand, other chlamydial transporters,
such as the phosphate permease PitA (CT692 and CPn0680),
the glutamate transporter GItS (CT401 and CPn0528), ADP/
ATP translocase (CT065, CT495, CPn0351, and CPn0614),
amino acid-polyamine-organocation family (TC 2.A.3) trans-
porters (CT374, CT216, CPn0282 and CPn1031), and several
other predicted transporters are likely to be energized by an
H™ rather than an Na™ gradient. Table 2 shows that genera-
tion of the proton motive force in chlamydiae could be accom-
plished through the action of either Na™/H™ antiporters of the
NhaD type or cytochrome d-type terminal oxidases.
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Porphyromonas gingivalis and Actinobacillus
actinomycetemcomitans

P. gingivalis and A. actinomycetemcomitans, both of which
are periodontitis-causing bacteria, encode both the primary
Na™ pump NQOR and NAD/NADP™ transhydrogenase, an
H™" pump (Table 2). The reason why these two residents of the
oral cavity, where the pH almost never goes above 7.8 and is
often much lower (117), would need a primary Na® pump is
not quite clear. One possible explanation is that an Na™ gra-
dient might help in stabilizing the levels of the proton motive
force in these bacteria, which could otherwise vary due to the
huge swings of the pH in the oral cavity, caused by consump-
tion of fluids of variable ion content. Such a “buffering” role of
Na™ gradient has been experimentally demonstrated in several
diverse bacterial species (19). Another reason for the existence
of a primary Na™ pump in oral pathogens is that in combina-
tion with the Ca®*/Na™ antiporter, it could help in protecting
the bacteria from excessive influx of Ca** ions from Ca®"-
saturated saliva (117). Finally, the most convincing explanation
of the possible role of NQR in P. gingivalis and A. actinomy-
cetemcomitans relies on the fact that periodontitis caused by
these bacteria is often accompanied by gum bleeding. As a
result, the salt content in the ecological niche occupied by
these microorganisms approaches that of the blood plasma,
i.e., is characterized by a relatively high concentration of Na™
ions. Thus, NQR could be as important for such oral patho-
gens as T. denticola, P. gingivalis, and A. actinomycetemcomi-
tans as it is for marine microorganisms. A possible conse-
quence of this adaptation is that periodontal pathogens may be
fit to survive in blood and cause bacteriemia. Indeed, P. gingi-
valis and A. actinomycetemcomitans have been recently detect-
ed in atherosclerotic plaques in the carotid artery (73).

Escherichia coli and Haemophilus influenzae

Early research of the membrane energetics of E. coli failed
to demonstrate an Na™ pump in this organism (203). Later
studies, however, provided ample evidence for primary active
Na™ transport under conditions of low proton motive force (6,
7,37). A AnhaA AnhaB mutant lacking two principal Na*/H™
antiporters retains the capacity to excrete Na* ions when in-
cubated in the presence of high concentrations of K* (74).
After the genome sequence of H. influenzae became available,
it was found to contain an ngr operon very similar to the one
in V. alginolyticus (Table 1). Soon thereafter, the presence of
NQR in H. influenzae was demonstrated experimentally (82).
Recent experiments with E. coli confirmed the presence of a
primary Na™ pump in this organism (192). In spite of all these
findings, the ngr genes in the E. coli genome sequence re-
mained unidentified until now (Table 1), probably due to their
unusual order in the operon and the likely nonorthologous
displacement of the beta subunit.

Vibrio cholerae

While V. cholerae clearly has multiple H" and Na™ pumps
and a number of Na™/H" antiporters (Table 2), it relies on
Na™-dependent polar flagella for its motility (111). V. cholerae
also provides the only well-documented case of the connection
between transmembrane Na™ circulation and the expression of
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pathogenicity determinants (78). Dissipation of the sodium
motive force by ionophores, ngr mutations, or NQR inhibitors
in each case led to an increased expression of virulence-related
genes encoding cholera toxin and toxin-coregulated pili (78).
Changes in Na™ circulation appeared to affect a set of regula-
tory membrane proteins, TcpP and TcpH, which, in turn, are
required for the expression of ToxT, a transcriptional activator
of the major virulence factors in V. cholerae (77, 78). At high
NaCl concentrations in the growth medium, the TcpP/TcpH-
mediated activation of foxT was diminished (78). Thus, at least
in V. cholerae, a functional linkage between the virulence factor
expression machinery and the Na™ cycle has been shown ex-
perimentally. The reason for this connection is not clear, al-
though it has been speculated that one of the functions of
cholera toxin might be the generation of an Na*-rich environ-
ment in the intestinal lumen to boost the efficiency of the Na™
cycle in V. cholerae cells immersed in alkaline medium (9).

In many pathogens including V. cholerae, motility is consid-
ered a virulence factor (72, 150). However, the relationship
between motility and virulence in V. cholerae is quite compli-
cated, since the motility phenotype itself appears to affect the
expression of virulence determinants. Indeed, some nonmotile
mutants of V. cholerae showed increased foxT transcription and
constitutive expression of cholera toxin and toxin-coregulated
pili under alkaline conditions (67, 78). Deceleration of flagellar
rotation by different means, such as high medium viscosity or
inhibitory drugs, had a similar effect (78). On the other hand,
cholera toxin and toxin-coregulated pilus expression was re-
pressed in several spontaneous hypermotile mutants (67). A
hypermotile phenotype was also observed in foxR mutants,
which are defective in the regulatory protein ToxR, which also
is required for expression of ToxT (67, 78). Thus, not only is
the motility phenotype controlled by the ToxR regulon in this
species, but also there appears to exist a specific signal trans-
duction mechanism that monitors cell motility and conveys that
information to the virulence regulatory cascade. However, the
molecular mechanisms underlying these signal transduction
events remain obscure. It could be noted in this regard that
products of two ToxR-regulated genes, tcpl (VC0825) and acfB
(VC0840), located on the pathogenicity island responsible for
the expression of toxin-coregulated pili, are homologous to
methyl-accepting chemotaxis receptors. Mutations in these two
genes positively affect the motility of V. cholerae as assayed by
swarm plate assays (57, 75). Further experiments are required
to try to pinpoint the exact signals(s) that links the Na™ cycle
and expression of pathogenicity factors in V. cholerae. The
likely candidates for such a signal are changes in the total level
of sodium motive force (78) or one of its components, e.g., the
membrane potential (36). It would be also extremely interest-
ing to determine which of the V. cholerae proteins acts as the
primary “bioenergetic” sensor. In summary, V. cholerae seems
to be a useful system for studying the possible involvement of
Na™ cycle elements in the regulation of virulence.

Na™ PUMPS AS DRUG TARGETS

The structures of some of the inhibitors of the Na™ cycle
discussed in this section are shown in Fig. 5.
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FIG. 5. Structures of some inhibitors of the Na™* cycle. (A) Koror-
micin. (B) 2-n-Heptyl-4-hydroxyquinoline N-oxide (HONO). (C) Mo-
nensin. (D) Amiloride.

Amiloride

Korormicin

The importance of the Na™ cycle in the energy metabolism
of certain human pathogens suggests that primary Na* pumps
might hold promise as potential drug targets. Indeed, koror-
micin, a powerful inhibitor of NQR (223), was originally isolat-
ed as an antibiotic, secreted by a marine bacterium, Pseudo-
alteromonas sp. strain F-420 and demonstrating antibacterial
activity against other marine bacteria (139, 224).

Korormicin is an extremely effective noncompetitive inhibi-
tor (K, ~ 8 X 10~ M) of the interaction of NQR with its
quinone substrate. As a result, korormicin was approximately
10*-fold more active in inhibiting purified NQR than was
2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a traditional
and well-studied inhibitor of NQR (223). Korormicin proved
to be a specific inhibitor of NQR, since it had no effect on
Na™-independent NADH oxidase (NADH:menadione reduc-
tase) activity (223). At the cellular level, korormicin was active
against a variety of gram-negative halophilic bacteria, includ-



364 HASE ET AL.

ing Vibrio alginolyticus, Shewanella putrefaciens, and Alteromo-
nas macleodii (223). These observations show that inhibiting
NQR is lethal for at least some marine bacteria and that
perhaps the same approach could work against human patho-
gens that depend on the Na™ cycle. Other known inhibitors of
the Na™ cycle in bacteria include Li* and Ag*ions, amiloride,
and monensin, an artificial electroneutral Na*/H™ antiporter.

Ag*

While antibacterial effects of silver salts were first noticed
long ago (see reference 180 for a review), NQR has been
recently recognized as one of the targets of Ag”* ions. In two
independent studies, nanomolar concentrations of Ag* ions
were shown to inhibit energy-dependent Na™ transport in in-
side-out vesicles of alkalophilic Bacillus sp. strain FTU and to
inhibit purified NQR of V. alginolyticus (81, 177). Later, Ag"
was shown to irreversibly bind to the beta subunit of NQR
(NqrF or Nqr6), causing enzyme denaturation and the loss of
its flavin adenine dirucleotide cofactor (139). Half-maximal
inhibition of the enzyme activity was attained at concentrations
between 0.5 and 2 nM Ag™, making NQR one of the most
vulnerable targets of Ag™* ions.

Li*

A number of Na*-dependent bacterial permeases, including
NhaA- and NhaB-type Na*/H" antiporters, can use Li* in-
stead of Na™* (95, 146, 151). As a result, Li" is effectively
exported from the cell and thereby decreases its toxicity. Thus,
growth inhibition of wild-type E. coli required as high as 700
mM Li" in the medium, while a AnhaA AnhaB double mutant
could not grow even in the presence of 30 mM Li* (95). The
growth of P. aeruginosa is also Li* sensitive (96). NQR does
not seem to use Li™ as substrate, and some data suggest that
Li* inhibits this enzyme (214). If so, Li* might have poten-
tial as drug against Na™ cycle-dependent bacteria; however, it
should be noted that Li* is mildly toxic for humans. It is cur-
rently used in the treatment of bipolar affective disorder and is
known to affect thyroid function, leading to hypothyroidism
and goiter.

Monensin

An artificial electroneutral Na*/H" antiporter, monensin
has been traditionally used as a nutritional additive (growth
promoter) in cattle (54, 213). Monensin addition reduces
amino acid fermentation and, hence, ammonia production in
the rumen by disrupting the Na™ cycle in ruminal Peptostrep-
tococcus spp., which imports some amino acids in symport with
Na™ ions (24, 25). An Na*-motive, biotin-dependent glutaco-
nyl-CoA decarboxylase and an Na " -motive membrane ATPase
are apparently operative in this bacterium (24). Well-estab-
lished activity of monensin against many anaerobic bacteria
including Clostridium perfringens, Streptococcus bovis, and oth-
ers (21, 167) suggests that it holds promise as a prototype for
new antibacterial drugs.

Amiloride

The diuretic drug amiloride and its S-aminoalkylated deriv-
atives are potent inhibitors of mammalian Na*/H"* antiporters
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of the NHE family (60, 145). Amiloride was found to be inef-
fective against the NhaA-type Na™/H™" antiporter in E. coli,
but it inhibited the NhaB-type antiporter with K, s = 6.0 pM
(159). Tenfold-higher concentrations of amiloride were re-
ported to inhibit the NhaA antiporter of V. parahaemolyticus
(116). However, high doses of amiloride should be used with
caution, since at high concentrations it may act as a nonspecific
uncoupler (32). Amiloride and some of its derivatives inhibit
the Na*-dependent motility of V. parahaemolyticus, V. algino-
Wyticus, and V. cholerae (4, 99), which indicates that it could be
used in preventing colonization.

NgrA AS A VACCINE CANDIDATE

Because NQR is a membrane protein, whose phylogenetic
distribution is apparently limited to marine bacteria and cer-
tain human and animal pathogens (Table 2), its subunits could
make interesting vaccine candidates. A study of Actinobacillus
pleuropneumoniae, the causative agent of pleuropneumonia in
swine, showed that the NqrA protein (referred to as AopA by
the authors) was immunogenic in infected pigs (31). Even
though NqrA is a cytoplasmic membrane protein that was not
detected in the outer membrane in any significant amounts, the
serum of convalescent-phase pigs infected with A. pleuropneu-
moniae was found to contain anti-NqrA antibodies. It is tempt-
ing to speculate that switching off the Na™ pump of A4. pleuro-
pneumoniae might have helped those pigs to fight infection.
The NqgrA protein of Porphyromonas gingivalis has been pat-
ented in Australia as a “50 kD antigen PG1” (GenBank acces-
sion number AF144076), presumably due to its immunogenic
properties. These observations, while still preliminary, suggest
yet another direction of future studies of the role(s) of primary
Na™ pumps in bacterial infection.

CONCLUSIONS AND PERSPECTIVES

Although analysis of the role of Na™ ions in bacterial viru-
lence is still in its infancy, a few things are becoming increas-
ingly clear. The presence of genes encoding primary Na™
pumps in the genomes of a number of phylogenetically diverse
pathogenic bacteria (Table 1) indicates that generation of the
Na™ gradient is an important part of their membrane energet-
ics. It should be noted that such microorganisms as Myco-
plasma genitalium, M. pneumoniae, B. burgdorferi, H. pylori, and
Mycobacterium tuberculosis do not seem to encode any primary
Na™ pumps (see Table 1) and may not depend on Na™ circu-
lation. Most bacterial pathogens, however, encode both Na™
and H" pumps and multiple Na*/H" antiporters (Table 2)
that ensure the maintenance of both Na* and H* gradients on
their cytoplasmic membrane. It appears, therefore, that the
sodium motive force supplements the proton motive force as
an additional source of energy in these bacteria. In an extreme
case, the syphilis spirochete 7. pallidum appears to encode no
primary H* pumps; it thus might exclusively depend on the
sodium motive force, generated by Na ™ -transporting oxaloac-
etate decarboxylase, for its energy metabolism. For several
other important pathogens, including C. trachomatis, C. pneu-
moniae, and H. influenzae, NQR comprises the principal respi-
ratory ionic pump; their genomes also encode pyrimidine nu-
cleotide transhydrogenase and/or cytochrome bd-type terminal
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oxidase (Table 2). Several pathogens, including K. pneumoniae,
V. cholerae, and S. enterica serovar Typhi, are capable of an-
aerobic citrate fermentation, which includes Na™ cycling
across the cytoplasmic membrane.

One could think of several possible explanations for the
widespread distribution of the elements of the Na* cycle
among pathogenic bacteria. First, Na"-based membrane ener-
getics could improve the versatility of a pathogen by providing
it with additional means of ATP synthesis, motility, and solute
uptake. This would improve its chances for colonization of the
host cells and survival in the host organisms, where defense
mechanisms, such as generation of superoxide radicals impair
the integrity of the bacterial membrane and decrease the levels
of the proton motive force. Second, because Na™ concentra-
tions in most natural environments are almost 10°-fold higher
than H" concentrations, sodium motive force levels are un-
likely to change as rapidly as proton motive force levels,
making sodium motive force a much more reliable source of
energy. Finally, the well-known similarity between the salt con-
tent of blood and seawater could create evolutionary pressure
toward the development of similar adaptation mechanisms in
human pathogens and marine microorganisms or, alternative-
ly, acquisition of the corresponding genes through horizontal
gene transfer.

The dualistic H*- and Na™-based character of membrane
energetics in pathogenic bacteria propounds a number of in-
triguing questions. First, is the persistent appearance of ele-
ments of the Na™ cycle in very different pathogens just a
consequence of the adaptive advantage of having more than
one chemiosmotic coupling ion, or is there a more profound,
mechanistic link between the presence of an Na™ cycle and
virulence? And, if the latter is true, what is the exact mecha-
nism linking Na™ energetics to the regulatory events respon-
sible for the expression of pathogenicity determinants? In
other words, does a change in Na™ homeostasis signal the
pathogenic organism that it has reached its destination inside
the host and that it is time to activate the expression of viru-
lence factors? At least in the case of V. cholerae, the cells
appear to respond to alterations in Na™ circulation by modu-
lating the expression of the main virulence regulon (78). The
exact nature of the potential sensor and the mechanism of this
regulation are, unfortunately, still unknown.

From the practical point of view, the peculiar character of
the Na* cycle in bacterial pathogens makes its components
attractive potential targets for the development of “smart”
drugs and therapeutic strategies that would have minimal side
effects at acceptable antimicrobial potency. A few examples
considered in this review illustrate the potential of different
chemicals acting as specific inhibitors of primary Na™ pumps
(korormicin and Ag™*), Na™/H" antiporters (amiloride and its
analogs), substrate analogs (Li"), and Na™-translocating iono-
phores (monensin). It should be stressed that for a large num-
ber of Na™ transporters, there are no known specific inhibitors.
However, our analysis shows that a variety of new potential
drug targets could be pinpointed by screening complete and
partially complete bacterial genomes. The putative system
of the Na*-dependent anaerobic fermentation of citrate in
T. denticola, V. cholerae, S. enterica serovar Typhi, and some
other pathogens may be mentioned as such a potential target.
In addition, the immunogenic efficacy of NqrA demonstrates
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that Na™ pumps, residing in the cytoplasmic membrane of
gram-negative bacteria, are much more appealing targets for
the development of effective vaccines than it would have
seemed from their “nonsurface” localization. Although drugs
targeted against the components of Na* cycle, such as NQR,
would certainly have a limited antibacterial spectrum, they
might be very helpful weapons against persistent infections
caused by Treponema or Chlamydia species and potentially
might even help in preventing coronary artery disease and
atherosclerosis, to which chlamydias are now believed to con-
tribute.

The presence of primary Na™ pumps in modern archaeal
and bacterial hyperthermophiles suggests that the Na™ cycle
was a primary mechanism of energy conservation in the com-
mon ancestor of these two branches of the Tree of Life (see
references 124 and 220 for discussions). As is the case with
free-living extremophiles (thermophiles, halophiles, and alka-
lophiles), human pathogens may rely on the Na® cycle to
survive and grow in the hostile environment created by host
defense mechanisms. It seems reasonable to expect that eluci-
dation of the precise role of Na™ circulation in pathogenic
bacteria would open new avenues of research, which poten-
tially could bring not only additional knowledge but also novel
approaches to cure infectious diseases.
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