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ABSTRACT

Motivation: The vastness and complexity of the biochem-
ical networks that have been mapped out by modern
genomics calls for decomposition into subnetworks.
Such networks can have inherent non-local features that
require the global structure to be taken into account in the
decomposition procedure. Furthermore, basic questions
such as to what extent the network (graph theoretically)
can be said to be built by distinct subnetworks are little
studied.

Results: We present a method to decompose biochemical
networks into subnetworks based on the global geometry
of the network. This method enables us to analyze the
full hierarchical organization of biochemical networks and
is applied to 43 organisms from the WIT database. Two
types of biochemical networks are considered: metabolic
networks and whole-cellular networks (also including for
example information processes). Conceptual and quan-
titative ways of describing the hierarchical ordering are
discussed. The general picture of the metabolic networks
arising from our study is that of a few core-clusters centred
around the most highly connected substances enclosed
by other substances in outer shells, and a few other
well-defined subnetworks.

Availability: An implementation of our algorithm and other
programs for analyzing the data is available from http:
Ilwww.tp.umu.se/forskning/networks/meta/
Supplementary information: Supplementary material
is available at http://www.tp.umu.se/forskning/networks/
meta/

Contact: holme@tp.umu.se; hussm@kth.se;
hjeong@nd.edu.

INTRODUCTION

Wagner, 2000; Wagner and Fell, 2001). This, the coarsest
level of describing cellular biochemistry, is a valuable
complement to more detailed studies in that it can shed
light on the global organization of biochemical networks
(cf. Wagner and Fell, 2001). Besides the findings of
universal graph-structural properties, such methods have
been used to identify arguably biologically significant
subnetworks (Schusteet al., 2002). The desire for
finding subnetworks arises from the vastness of the
biochemical networks; even a prokaryote suchEa®li

has a metabolism involving over 850 substances and 1500
reactions. Attempts to elucidate for example a bacterium’s
metabolic repertoire, thus face the problem of combinato-
rial explosion. A fundamental question is therefore what
the hierarchical organization of subnetworks looks like.
Can relevant subnetworks be found at arbitrary sizes? Is it
at all relevant to talk of subnetworks, or must the whole
network always be taken into account? This paper aims
to answer these questions by proposing a general method
for partitioning a biochemical network into subnetworks
by successively removing reactions of high betweenness
centrality—reactions situated between areas of many
interior pathways (i.e. well-defined subnetworks). Be-
sides finding explicit subnetworks of arbitrary sizes, this
method also enables us to investigate the full hierarchical
organization of a cellular network—how a subnetwork
can be divided into sub-subnetworks and so on.

TRACING THE HIERARCHICAL

SUBNETWORK STRUCTURE

Networks

We represent the metabolic network as a directed bi-

partite graphG = (S R,L) where S is the set of
nodes representing substrateR, is the set of nodes

In the last few years, several studies have addressé’@_pfesent_ing chemical regctions, amdis the set of
graph theoretical aspects of biochemical networks (se@lirected links—ordered pairs of one node $nand one
for example, Schuster and Hilgetag, 1994; Schustefode iNR. s1,...,sy € Siis involved in a reaction

et al., 1999, 2002; Jeongt al., 2000, 2001; Fell and ' € R with productss’y, ..., sy € S, if and only if
(s1,r),..., (s, r) € Land(r,s'1),...,(r,sy) € L.
The networks we use (the same data set as in Jeong
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Subnetwork hierarchies of biochemical pathways

I ther a source or sink, and then consider connected compo-
B nents of ‘internal’ metabolites as subnetworks, the motiva-
3 tion being that the system can be regarded as buffered with
= 600006000006000060 respect to the substrates participating in the largest number

Y IS = . s : of reactions (Fell and Wagner_, 2_000). If the relabelh_ng of
< 2(ho) 1(ho) an internal node as external is interpreted as deleting the
node from the network of internal nodes, this method is
Fig. 1. A simple hierarchical clustering tree. A horizontal cut equivalent to the attack vulnerability study of Albettl.

gives the tighter connected subgraphs below, and looser connection,@ooo)’ where networks response to the removal of nodes

above. § (ho) is the size of théth largest connected subgraph at IN order of degree was discussed. o
heighthg. Note that the root is at the top ahdyrows downwards. The heuristic motivations anch posteriori success
(for subnetwork detection) of the method of Schuster

al. makes it an important contribution to biochemical

et al., 2001) were constructed from the WIT database pathway analysis. A potential drawback of this method
(Overbeek et al., 2000) consisting of 43 organisms is that networks might have inherent non-local features

from all domains of life—6 archae, 32 bacteria, and 5M0t possible to be detected by local quantities such as

eukaryotes. We distinguish between metabolic networkdegree. (Non-local effects are known to be an important
and whole-cellular networks—networks representing thé@ctor in for example social networks; see Granovetter,
full set of cellular pathways. WIT divides the latter into 1973:) To be specific, consider a nodewith degree

the following subcategories: intermediate metabolisnfm > Kmax neighbours, all except one havikg= 1. This

and bioenergetics, information pathway, electron trans!S @ local centre but globally (for a large enough network)

port, transmembrane transport, signal transduction an@ Peripheral node. Then all these = 1-nodes would
structure and function of cell. of which intermediate be .classmed as belon_glng to |nd|y|du_al one-node clusters,
metabolism and bioenergetics constitute the metabolitvile @ more informative categorization would be to have
networks. Due to the current pace of database develop€K = 1 andk = km nodes in the same cluster. Indeed,
ment our data is somewhat aged. Furthermore the signijiS kind of configuration actually exists, which will be
transduction and transport part of our data is limited, ang"'OWn later. The method for identifying subnetworks
genetic regulation data missing (so the term ‘whole-celfPresented in the following two septlons) is similar to _that
network’ is a rather crude overstatement). Nevertheles® Schusteetal. only that our algorithm removes reaction

the big picture should be fairly insensitive to discrepancieé‘Odes rather 'ghan substrates, and the removal is based on a
in the database (see also discussions in the works cited obal centrality measure (betweenness) rather than a local

the I ntroduction), which adds confidence to our analysis (189r€€)-

of the global organization of the networks (which alongConstructing hierarchies of subnetworks
with the method itself is the main theme of the paper).

o 4
o
=

Structural studies of networks have a long history in
Decomposition algorithms sociology, and many methods and concepts can be brought

. . . over to biological network studies as well. The traditional
The standard set of metabolic pathways described in b'vvay of detecting hierarchies of subnetworks (or the

ological literature is sometimes too rigid to capture the‘community structure’) in social networks has been by
essence of what is happening in an organism, the SUtf{ierarchical clustering methods (Johnson, 1976), where

systems identified in this way will often to a large ex- Lo )
. . .one reconstructs the network by adding links in order of
tent overlap and intertwine. As a complement to the tradi-

. : ' . some measure of strength. In this way one can construct
tional approach there is a need for unbiased analytic metéhierarch tree. where the tiahtest connected subaraphs
ods, such as the one proposed by Schuetalr (2002), a y ' 9 grap

method for decomposing a biochemical network into sub?'® joined by links close to the root of the tree, and the

networks based on the degree of the metabolifé® idea :ggft(;(;rég'—__riangle; 'ﬁg\;gggﬂlﬁggﬂ Ié?le(rsas:rﬁicgloiﬁjé?e:&e
of Schusteret al. is to label metabolites with degrde 9. 4. ' 9

larger than some threshold valkiga as ‘external'—as ei- methods have some inherent flaws. For example, just as
9 ax by Schuster's method above, nodes with one neighbour
T Similar information can be obtained from the KEGG (Kanehisa and Goto,0ften become C|aSS_Ierd as belonging to a one-node
2000), EcoCyc (Karget al., 2000) and EMP (Selkoet al., 1996) databases.  cluster. In remedy, Girvan and Newman (2002) proposed
*Degree is the number of neighbours to a node of a graph. (Sometimean elegant method where one deconstructs the network
degree is called connectivity.) : ; ; :
Another potentially interesting cluster identification algorithm applied by succes_swely d.eletmg I!nks carrylng many shortest
faths—which are likely to lie between tightly connected

to backbone clusters of residues in proteins is presented in Patra al
Vishveshwara (2000). subnetworks.
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Betweenness centrality (2) remove the reaction node with highest effective

For an undirected graph the betweenness centrality betweenness and all its in- and out-going links;
(Freeman, 1977)—or for short, betweenness—of a node (3) save information about the current state of the
v is the number of shortest paths between pairs of nodes  network (such as how many clusters there are, and
that pass (if more than one shortest path exist between what nodes that belongs to a specific cluster).

u andu’ passew, the fraction of shortest paths through
v contributes to its betweenness). For the purposes of th
work we are interested in reaction nodes that are centr
for paths between metabolites or other molecules; thus w%b
redefine the betweenness centrality of reaction nodes
follows—forr € R:

g many reaction nodes have the same betweenness in
tep , we remove all of them at ont&he information
tained in step is used to construct the hierarchy trees
d statistics about the ordering. The worst case running
ime of the algorithm isO(M NsNR), where Ns is the
number of substrates andg is the number of reaction
Ca(r) = Z Z Oy () 1) nodes (cf. Girvan and Newman, 2002).

9

meM m'eM\{m} Omny

_ RESULTS

wher(n;amm/ (r) is the number of short_est paths between General shape of the hierarchy trees
andm’ that passes through andoyy is the total number i } , )
of shortest paths betweem and m'. For calculating AS an example of hierarchical clustering trees (Fig. 2),
betweenness we use the fast algorithm of Brandes (20019f metabolic and whole-cellular networks we consider

In a biochemical context, a node of high betweenneslose of the bacteriurireponema pallidum (T.pallidum).”
will thus represent a bottleneck in the flow between highly(T-pallidumis the pathological agent of syphilis. A recent
connected (more independently functioning) regionsr€view of its functions in a genomic perspective is given in
Since the betweenness does not contain reaction kinetlorris et al. 2001.) Most constituents are connected into
information, a high betweenness does not necessaril§ 9ant component (a cluster whose size scales linearly
mean that the reaction is frequent (and it should not—theWith the total number of nodes, see for example, Janson
high betweenness would not correspond to being situate@d al., 2000). Close to the root (Fig. 2, top) the giant

between highly connected areas). component is still existent, but at height ~ 0.8 hmax
_ of the hierarchy tree the giant component starts to break
Our algorithm into well-defined clusters. When a cluster breaks into

As we represent the biochemical network as a bipartitéubclusters of similar sizes, we say the hierarchy tree
graph (so that all substances—metabolites, macrdias ‘community-type ordering’ at the hierarchy level in
molecules, complexes, etc.—are separated by reactigitestion (Fig. 3a). Biochemically this means that the
nodes and an even number of links), we modify themass flow within the subclusters are more complexly and
algorithm of Girvan and Newman (2002) and succesdensely routed than between them, and the function of
sively delete reaction nodes with high betweenness witfhe original cluster can be understood as composed by
respect to substrates/products and enzymes. A reactidglatively distinct modules (i.e. the subclusters). When, on
corresponds to a passage through all inward links to the other hand, the cluster breaks into one large subcluster
reaction node. To take this into account we regard thé@nd many isolated nodes the level has a ‘shell-type
effectiveness of a link in the betweenness definition agrdering’ (Fig. 3b) where the outer nodes often act as
proportional to Ykin(r) (kin(r) being the in-degree, or infout-flow or buffers to the core-cluster, rather than being

number of substrates to a reaction). The rescaled, effectij@volved in complex interconversion processes. These

betweenness thus becomes: concepts designed to signify the extreme cases of a most
or least symmetric splitting of the clusters, intermediate
cg(r) = Cg(r)/kin(r) (2)  cases where the cluster splits into subclusters of various

With these definitions the algorithm comes closer to thafiZes can of course also occur. In the real hierarchy trees
of Girvan and Newman (2002), where link betweennesd'@ Study, shell-type ordering is frequent in the whole
is the operative centrality measures<r) could also be {ree, and domlnatc_es the levels _closest to the root (with
interpreted as the average link betweennesssoihward ~ Small h). Community-type ordering, on the other hand,
links. is only frequent at highn. This lack of a community-type

With the above modifications, the algorithm consists
9 SThis is needed to make the algorithm consistent and deterministic, and

of the foIIowmg steps repeated until no reaction nOdthe A C-implementation of the algorithm, along with a test data set can be

remain: obtained from http://www.tp.umu.se/forskning/networks/meta/.
. THierarchical clustering trees of the other 43 organisms of the WIT database
(1) CaICU_Iate the effective betweennesg(r) for all (Overbeelet al., 2000) used in this study can be seen on http://www.tp.umu.
reaction nodes; se/forskning/networks/meta/.

534



Subnetwork hierarchies of biochemical pathways
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Fig. 2. The hierarchical clustering trees @pallidum. (a) Shows the tree for the metabolic network, (b) shows the whole-cellular network.
The squares represent the subnetwork configuratibr=a0.1 hmax (the height indicated by the arrow). Sizes of the squares are proportional
to the size of the clusters they represent.

ordering close to the root of the tree (such as seen i (@) (b)
for example social networks and ecological food-webs <
Girvan and Newman 2002) is related to the highly het- <+

erogeneous centrality distribution (Jeostgal., 2001) of
cellular biochemical networks: The giant component is
tightly connected by the many paths involving the most
connected substances, ATP, NADH;®{ and so on. The
core of the metabolism is centred around these most con-
nected substances, hence most well-defined subnetwork
must contain these, but this is precisely to say that the
subnetwork containing these is sure to dominate most lev-
els of the organization. Community-type ordering occurs
when e.lther none of these most connected SUbStancesﬁS@. 3. Schematic picture of the two different orderings in hierarchy
pentrql in some subnetwork, or when these substances fEl'Il es. (a) Community-type ordering—same level core-clusters con-
into different subnetworks. Both of these cases occur ifected by outer parts of the network. (b) Shell-type—a sequence of
for exampleT.pallidum (Fig. 2; a functional description core-clusters contained in each other. The squares symbolizes the
of these subnetworks will be given latefjt-acetyl-D-  reaction nodes that are deleted at the height marked by the arrow.
glucosamine 1-phosphate, D-glucosamine 1-phosphati (a) three subnetworks of similar sizes gets disconnected when
dihydrolipoamide, S-acetyldihydrolipoamide, CoA, and the reaction nodes are removed. In (b) many individual metabolite
acetyl-CoA define small subnetworks not including anynedes (circles) getisolated.

of the most connected substances (Fig. 4). The highly

connected orthophosphate and the substances most tightly

connected to it ¢-D-ribose 1-phosphateq-D-ribose  Statistics of the hierarchical ordering

1-phosphate adenine, adenosine, hypoxanthine, angh immediate impression from looking at the hierarchy
inosine) define another subnetwork that at a higher levakees of the 43 WIT organisms is that they are similar
of organization (loweh) isjoined by other substances (2- in the large scale and more diverse locally. Furthermore,
deoxy-D-ribose 1-phosphate, deoxyadenosine, guaningie shell-type ordering dominates much of the srhall-
and guanosine) to a more loosely connected subnetworkegion of metabolic networks, whereas in the whole cell
The general picture that arises from the study of hierarchyietworks, community-type ordering also occurs close to
trees is thus that the cellular biochemical networks consighe root. This section aims to quantify these observations.
of outer shells encapsulating a core of the most connected third observation is that, as increases, the tree often
substances, with a few well-defined subnetworks at an insplits in a non-uniform way, so that only individual nodes
termediate level of the organization. This picture is (moreor smaller clusters are removed from the largest connected
or less) the same for all the 43 organisms examined. component at a time.

:i:ijl:

=
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iﬁt{\ Fig. 5. The relative size of the netwod /Nmax; the ratio between

K )
d d
2dooybriboss tphosphate @ (o020 the largest values of the second largest and largest connected

pyrophosphate subgraphsS'®/S"®; and the relative half-heiglty 2/ hmax for

HO

N acety gl hate g PV oPhosphate =) co; the 43 studied organisms.
CoA f °
@ guanosine.
@ guanine ) . . .
O §CeICoA deoxyguanosine clusterS. In Figure 5S'®/S"® is displayed for all 43
O pyruvate, COp organisms. A large value of this quantity means that the
Do e aipaamide@ Sacetyldinydrolipoamide network at some time has at least two subnetworks of a

large and similar size and thus a pronounced community-
_ _ _ type order. Networks with a higlg)'®/S"® in fact
Fig. 4. Subnetworks from thg metabolic networks Dpallidum. also have a higrg;lax/qu and so on, so this quantity
(a) Shows the part of the hierarchy tree that (b) corresponds tQ, ks well as a measure of the degree of community-
Grey substance names show where shortest paths to the hubs (mg;be order. Figure 5 shows that there is a large variance in
connected substances of the network) enter. gz'”ax/gfax (with $aX/Sl“ax — 0.06(5) for the metabolic
networks andSf'*®/S"* = 0.05(3) for the whole-
cellular networks). Although larger databases would be
The large-scale shape of the tree can be measured jfgeded to obtain statistical certain§'®/S" orders
many ways. One simple and informative quantity is thethe organisms as archae bacteria> eukaryotes. It is
half-height of the largest clustdry 2, i.e. the heighth  jnteresting to note that eukaryotes have the lowest value.
where the size of the largest clust®r has decreased to A more uniform (smallS;) organization is more robust,
half of its original value (For notations see Fig. 1). If which suggests that eukaryote biochemical networks are
uniform ordering, where clusters break into clusters ofmore robust than those in bacteria and archae.
similar sizes, would dominate all levels of organization
(such as the examples from sociology and ecology irPetected subnetworks
Girvan and Newman, 2002) we expect a very smalfTo give an explicit example how community- and shell-
relative half-heighthy/2/hmax (h1/2 o 10ghmay). In ordering are manifested in a metabolic network, we con-
Figure 5 the relative height of the tree whe¢ has sider two small subnetworks &t = 40 of the hierar-
decreased to half of its original valudii/>/hmax is  chy tree ofT.pallidum's metabolic network (Fig. 2) shown
displayed. Averaged over all 43 organisms this happeni Figure 4. These subnetworks contains reactions asso-
ath = 0.79(4) hmax for the metabolic networks and ciated with purine metabolism and pyruvate/acetyl-CoA
h = 0.76(4) hmax for the whole-cellular networks—a conversion. The pyruvate-acetyl-CoA part ((i) in the hier-
very narrow region suggesting an universal behaviour (segrchy tree, Roman numbers refer to Figure 4a) is a tightly
Figure 5). Even though the almost constant,/hmaxis  interconnected, fairly independent subnetwork, while the
not trivially related to other universal features, such aspurine metabolism part consists of an outer shell (ii) en-
the constant average shortest-path length (Jestred.,  capsulating a smaller core (iii), which is centred around
2001), it is consistent with the general picture of a greabrthophosphate and has to do with interconversions be-
diversity of organisms having a very similar large-scaletween adenosine and related nucleosides. Deoxyadenosine
organization of the biochemical pathways. ends up in the outer shell (ii) while adenosine is located
To measure the magnitude of community-type orderingn the core (iii) because there are two reactions involv-
we study theh-evolution of the size of the second largesting adenosine and orthophosphate, but only one with de-

536



Subnetwork hierarchies of biochemical pathways

enzyme I||Man
(a) en%,yme 1nsSle
enzyme 1niser
enzyme |lIIMan NPphosphohistidine
HPr proteinNpros "phosphohistidine
enzyme I11GIc NPphosphohistidine

HPr protein histidine

enzyme I1IF'Y NPphosphohistidine
enzyme |[IFTY

enzyme I11SC" NPphosphol |5t|d|£e

ep

6.5.1.2.DNA ligase

open prepriming complex
SSB

2.7.7.7.DNA polymerase |

DNA helicase Il
2.7.7.7.DNA polymerase IlI
5.99.1.3.DNA topoisomerase ||
5.99.1.2.DNA topoisomerase |
primosome complex

enzyme I1IGlc

(b) enzyme 111150 O NPphosphohistidine

O enzyme 1iFru

enzyme [l|Man
NPphosphohistidine

NPphosphohistidine
O enzyme I1IFr

QO HPr protein Npros

enzyme [||Man phosphohistidine

HPr proteipn-istidine

O enzyme jnser
°® NPphosphohistidine
pyruvate
QO enzyme 1iSer
phosphoenol pyruvate
(C) 2.7.7.7.DNA polymerase ”'. 5.99.1.2.DNA topoisomerase |
P [ ) 2.7.7.7.DNA polymerase |
5.99.1.3.DNA topoisomerase @ssB
primosome _comptex @ DNA helicase I
GngO ¢ .Rep. 6.5.1.2.DNA ligase
® on%hosphate open prepriming complex
ortophosphate Q ADP
ATP O
Qurp @ prepriming complex
OrNA primerprimosome complex

network (Fig. 6¢) has to do with DNA replication. (see for
example, Lewin, 1997, for an overview of DNA replica-
tion). Although both of these subnetwork differ from the
metabolic networks in that the nodes are not metabolites
which are interconverted but rather enzymes that interact
with or are part of macromolecular complexes, they both
nevertheless represent biologically meaningful groups of
substances. Furthermore, the DNA replication subnetwork
is centred around a reaction node with high degree (local
centrality), but relatively low betweenness (global cen-
trality). Thus local, degree-based, algorithms would have
difficulties identifying such a subnetwork. Note that the
subnetwork of Figure 6b is ordered higher (is connected
at a lowerh) in the hierarchy than that in Figure 6c since
the reversibility of the reactions in Figure 6b increases
their betweenness.

SUMMARY AND DISCUSSION

We propose an algorithm for decomposing biochemical
networks into subnetworks based on the global network
structure. The algorithm—a development of the algo-
rithms by Girvan and Newman (2002), and Schuster
et al. (2002)—is purely graph theoretical and uses no
biological criteria (cf. Schilling and Palsson, 2000). The
data we study are the sets of metabolic and whole-cellular

networks of 43 organisms (archae, bacteria and eukary-
. ) ) otes) from the WIT database. We emphasize the study of
Fig. 6. An excerpt of the hierarchy tree of (&) pneumoniae and l:IF;}ierarchy trees to get a general view on the organization

the corresponding subnetworks associated with sugar import and ( f subnet ks. To ch terize the hi hical .
DNA replication (c). Symbols are the same as in Figure 4, excep Subnetworks. 10 characterize the hierarchical organi-

that nodes adjacent to the two clusters are marked with grey circle€@tion we introduce (to the biochemical network studies)
Of the grey nodes’ links, only those between the grey node andh€ concepts of community- and shell-ordering and
the cluster are shown. One cluster is three reactions away from thguantitative measures (the relative half-heighb/ hmax,
other by, for example, the reaction phospmalpyruvate+ ADP  and the relative largest size of the second largest cluster
—> pyruvate+ ATP. sénax/ glnaX)
The large-scale shape of biochemical network trees is
conspicuously uniform among organisms as manifested in
oxyadenosine and orthophosphate. Overall, however, theuniversal relative half-heightg,, = 0.79(4) hmax for
subnetworks in this case can be readily seen to represetiite metabolic networks arith, = 0.76(4) hmax for the
metabolic processes of increasing homogeneity. whole-cellular networks). The spread$'®/ S"®* shows
We exemplify whole-cellular networks of the bacterium that community-ordering is much more pronounced in
Mycoplasma pneumoniaevi(pneumoniae), a bacterium some organisms than in others. A sn&®*/ S"*implies
causing respiratory tract infections (see the review bya more robust network, which means that it is a quantity
Principi and Esposito, 2001) in Figure 6. In general theof potential interest for evolutionary studies (when the
whole-cellular networks are, perhaps not surprisinglydatabases reach a size where sufficiently good statistics
even more functionally distinct than the metabolic net-can be generated).
works. One of the subnetworks (Fig. 6b) is a part of Well-defined subnetworks occur at different levels of
the bacterial phosphotransferase system, the function afrganization (at different heights in the hierarchy tree).
which is to import carbohydrates into the cell (see SaierThis is a strong argument for looking at the whole hier-
2001, for an overview). Enzyme lll is an older collective archy tree rather than the subnetwork configuration at a
name for enzyme IIA and enzyme IIB. Each of thesespecific level. For the metabolic networks, the dominating
enzymes is specific for a certain kind of carbohydratestructure at most levels of organization is the largest
in Figure 6b, we see enzymes specific for mannitolconnected component. For the whole-cellular network,
glucose, sucrose and fructose, respectively. The otheron-metabolic subnetworks, such as those representing
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information pathways, signal transduction and the likeJeong,H., Tombor,B., Albert,R., Oltvai,Z.N. and Ba&abA.-L.
are often branched off from the metabolic circuitry close (2000) The large-scale organization of metabolic networks.
to the root of the hierarchy tree. Still, the largest compo- Nature, 407, 651-654.

nent is dominant over a large portion of the tree’s levelsJeond.H., Mason,S.P., Ba@bA.-L. and Olvai,Z.N. (2001)
The general picture of the hierarchical organization that -thality and centrality in protein networkiature, 411, 41-42.
emerges from our study is thus that biochemical networkgehnson.S.C. (1976) Hierarchical clustering scherfsgchome-
have individual core-clusters of the most connected t”k"’_l‘ 32,241-253. _
substances and their closest related substances; the rggpeh'sa'Maand Goég’sl' .(220%) EEG% gog’oemyc"jped'a of
of the substances are then organized as a more and mqgg?;';es a; jqugqoo)ucﬁ]z E'Cjc;f"am’j M_etalec databases
loosely connected outer shell, with the exception of some ™'+ Aids Res. 28. 56-59. '
well-defined clusters at intermediate levels. The fact thaf .

. N ewin,B.M. (1997) Genes VI, 6th edn, Oxford University Press,
one cluster dominates most of the organization suggests o ¢orq.

that in some contexts it might be deceptive to generalizgonis 5.3, Cox,D.L. and Weinstock,G.M. (2001) Biology of
properties of subnetworks to the whole network. Thus, Treponema pallidum: correlation of functional activities with
there might be global effects that will be overlooked in  genome sequence dagaMol. Microb. Biotechnol., 3, 37—62.

a purely modular description—so for a comprehensiveoverbeek,R.et al. (2000) WIT: integrated system for high-
picture of biochemical networks, one needs to integrate throughput genome sequence analysis and metabolic reconstruc-

studies at all levels of description. tion. Nucleic Acids Res., 28, 123-125.
Patra,S.M. and Vishveshwara,S. (2000) Backbone cluster identifica-
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