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ABSTRACT
Motivation: The vastness and complexity of the biochem-
ical networks that have been mapped out by modern
genomics calls for decomposition into subnetworks.
Such networks can have inherent non-local features that
require the global structure to be taken into account in the
decomposition procedure. Furthermore, basic questions
such as to what extent the network (graph theoretically)
can be said to be built by distinct subnetworks are little
studied.
Results: We present a method to decompose biochemical
networks into subnetworks based on the global geometry
of the network. This method enables us to analyze the
full hierarchical organization of biochemical networks and
is applied to 43 organisms from the WIT database. Two
types of biochemical networks are considered: metabolic
networks and whole-cellular networks (also including for
example information processes). Conceptual and quan-
titative ways of describing the hierarchical ordering are
discussed. The general picture of the metabolic networks
arising from our study is that of a few core-clusters centred
around the most highly connected substances enclosed
by other substances in outer shells, and a few other
well-defined subnetworks.
Availability: An implementation of our algorithm and other
programs for analyzing the data is available from http:
//www.tp.umu.se/forskning/networks/meta/
Supplementary information: Supplementary material
is available at http://www.tp.umu.se/forskning/networks/
meta/
Contact: holme@tp.umu.se; hussm@kth.se;
hjeong@nd.edu.

INTRODUCTION
In the last few years, several studies have addressed
graph theoretical aspects of biochemical networks (see
for example, Schuster and Hilgetag, 1994; Schuster
et al., 1999, 2002; Jeonget al., 2000, 2001; Fell and
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Wagner, 2000; Wagner and Fell, 2001). This, the coarsest
level of describing cellular biochemistry, is a valuable
complement to more detailed studies in that it can shed
light on the global organization of biochemical networks
(cf. Wagner and Fell, 2001). Besides the findings of
universal graph-structural properties, such methods have
been used to identify arguably biologically significant
subnetworks (Schusteret al., 2002). The desire for
finding subnetworks arises from the vastness of the
biochemical networks; even a prokaryote such asE.coli
has a metabolism involving over 850 substances and 1500
reactions. Attempts to elucidate for example a bacterium’s
metabolic repertoire, thus face the problem of combinato-
rial explosion. A fundamental question is therefore what
the hierarchical organization of subnetworks looks like.
Can relevant subnetworks be found at arbitrary sizes? Is it
at all relevant to talk of subnetworks, or must the whole
network always be taken into account? This paper aims
to answer these questions by proposing a general method
for partitioning a biochemical network into subnetworks
by successively removing reactions of high betweenness
centrality—reactions situated between areas of many
interior pathways (i.e. well-defined subnetworks). Be-
sides finding explicit subnetworks of arbitrary sizes, this
method also enables us to investigate the full hierarchical
organization of a cellular network—how a subnetwork
can be divided into sub-subnetworks and so on.

TRACING THE HIERARCHICAL
SUBNETWORK STRUCTURE
Networks
We represent the metabolic network as a directed bi-
partite graphG = (S, R, L) where S is the set of
nodes representing substrates,R is the set of nodes
representing chemical reactions, andL is the set of
directed links—ordered pairs of one node inS and one
node in R. s1, . . . , sn ∈ S is involved in a reaction
r ∈ R with productss′

1, . . . , s′
n′ ∈ S, if and only if

(s1, r), . . . , (sn, r) ∈ L and(r, s′
1), . . . , (r, s′

n′) ∈ L.
The networks we use (the same data set as in Jeong
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Fig. 1. A simple hierarchical clustering tree. A horizontal cut
gives the tighter connected subgraphs below, and looser connections
above. Si (h0) is the size of thei th largest connected subgraph at
heighth0. Note that the root is at the top andh grows downwards.

et al., 2001) were constructed from the WIT database†

(Overbeek et al., 2000) consisting of 43 organisms
from all domains of life—6 archae, 32 bacteria, and 5
eukaryotes. We distinguish between metabolic networks
and whole-cellular networks—networks representing the
full set of cellular pathways. WIT divides the latter into
the following subcategories: intermediate metabolism
and bioenergetics, information pathway, electron trans-
port, transmembrane transport, signal transduction and
structure and function of cell, of which intermediate
metabolism and bioenergetics constitute the metabolic
networks. Due to the current pace of database develop-
ment our data is somewhat aged. Furthermore the signal
transduction and transport part of our data is limited, and
genetic regulation data missing (so the term ‘whole-cell
network’ is a rather crude overstatement). Nevertheless,
the big picture should be fairly insensitive to discrepancies
in the database (see also discussions in the works cited in
theIntroduction), which adds confidence to our analysis
of the global organization of the networks (which along
with the method itself is the main theme of the paper).

Decomposition algorithms
The standard set of metabolic pathways described in bi-
ological literature is sometimes too rigid to capture the
essence of what is happening in an organism; the sub-
systems identified in this way will often to a large ex-
tent overlap and intertwine. As a complement to the tradi-
tional approach there is a need for unbiased analytic meth-
ods, such as the one proposed by Schusteret al. (2002), a
method for decomposing a biochemical network into sub-
networks based on the degree of the metabolites.‡ The idea
of Schusteret al. is to label metabolites with degreek
larger than some threshold valuekmax as ‘external’—as ei-

† Similar information can be obtained from the KEGG (Kanehisa and Goto,
2000), EcoCyc (Karpet al., 2000) and EMP (Selkovet al., 1996) databases.
‡ Degree is the number of neighbours to a node of a graph. (Sometimes
degree is called connectivity.)
Another potentially interesting cluster identification algorithm applied
to backbone clusters of residues in proteins is presented in Patra and
Vishveshwara (2000).

ther a source or sink, and then consider connected compo-
nents of ‘internal’ metabolites as subnetworks, the motiva-
tion being that the system can be regarded as buffered with
respect to the substrates participating in the largest number
of reactions (Fell and Wagner, 2000). If the relabelling of
an internal node as external is interpreted as deleting the
node from the network of internal nodes, this method is
equivalent to the attack vulnerability study of Albertet al.
(2000), where networks response to the removal of nodes
in order of degree was discussed.

The heuristic motivations anda posteriori success
(for subnetwork detection) of the method of Schusteret
al. makes it an important contribution to biochemical
pathway analysis. A potential drawback of this method
is that networks might have inherent non-local features
not possible to be detected by local quantities such as
degree. (Non-local effects are known to be an important
factor in for example social networks; see Granovetter,
1973.) To be specific, consider a nodem with degree
km > kmax neighbours, all except one havingk = 1. This
is a local centre but globally (for a large enough network)
a peripheral node. Then all thesek = 1-nodes would
be classified as belonging to individual one-node clusters,
while a more informative categorization would be to have
thek = 1 andk = km nodes in the same cluster. Indeed,
this kind of configuration actually exists, which will be
shown later. The method for identifying subnetworks
(presented in the following two sections) is similar to that
of Schusteret al. only that our algorithm removes reaction
nodes rather than substrates, and the removal is based on a
global centrality measure (betweenness) rather than a local
(degree).

Constructing hierarchies of subnetworks
Structural studies of networks have a long history in
sociology, and many methods and concepts can be brought
over to biological network studies as well. The traditional
way of detecting hierarchies of subnetworks (or the
‘community structure’) in social networks has been by
hierarchical clustering methods (Johnson, 1976), where
one reconstructs the network by adding links in order of
some measure of strength. In this way one can construct
a hierarchy tree, where the tightest connected subgraphs
are joined by links close to the root of the tree, and the
most long-range inter-community links are close to the
root (see Fig. 1). However, these hierarchical clustering
methods have some inherent flaws. For example, just as
by Schuster’s method above, nodes with one neighbour
often become classified as belonging to a one-node
cluster. In remedy, Girvan and Newman (2002) proposed
an elegant method where one deconstructs the network
by successively deleting links carrying many shortest
paths—which are likely to lie between tightly connected
subnetworks.
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Betweenness centrality
For an undirected graph the betweenness centralityCB
(Freeman, 1977)—or for short, betweenness—of a node
v is the number of shortest paths between pairs of nodes
that passv (if more than one shortest path exist between
u andu′ passesv, the fraction of shortest paths through
v contributes to its betweenness). For the purposes of this
work we are interested in reaction nodes that are central
for paths between metabolites or other molecules; thus we
redefine the betweenness centrality of reaction nodes as
follows—for r ∈ R:

CB(r) =
∑

m∈M

∑

m′∈M\{m}

σmm′(r)

σmm′
, (1)

whereσmm′(r) is the number of shortest paths betweenm
andm′ that passes throughr , andσmm′ is the total number
of shortest paths betweenm and m′. For calculating
betweenness we use the fast algorithm of Brandes (2001).

In a biochemical context, a node of high betweenness
will thus represent a bottleneck in the flow between highly
connected (more independently functioning) regions.
Since the betweenness does not contain reaction kinetic
information, a high betweenness does not necessarily
mean that the reaction is frequent (and it should not—then
high betweenness would not correspond to being situated
between highly connected areas).

Our algorithm
As we represent the biochemical network as a bipartite
graph (so that all substances—metabolites, macro-
molecules, complexes, etc.—are separated by reaction
nodes and an even number of links), we modify the
algorithm of Girvan and Newman (2002) and succes-
sively delete reaction nodes with high betweenness with
respect to substrates/products and enzymes. A reaction
corresponds to a passage through all inward links to a
reaction node. To take this into account we regard the
effectiveness of a link in the betweenness definition as
proportional to 1/kin(r) (kin(r) being the in-degree, or
number of substrates to a reaction). The rescaled, effective
betweenness thus becomes:

cB(r) = CB(r)/kin(r) (2)

With these definitions the algorithm comes closer to that
of Girvan and Newman (2002), where link betweenness
is the operative centrality measure—cB(r) could also be
interpreted as the average link betweenness ofr ’s inward
links.

With the above modifications, the algorithm consists
of the following steps repeated until no reaction nodes
remain:

(1) calculate the effective betweennesscB(r) for all
reaction nodes;

(2) remove the reaction node with highest effective
betweenness and all its in- and out-going links;

(3) save information about the current state of the
network (such as how many clusters there are, and
what nodes that belongs to a specific cluster).

If many reaction nodes have the same betweenness in
step , we remove all of them at once.§ The information
obtained in step is used to construct the hierarchy trees
and statistics about the ordering. The worst case running
time of the algorithm isO(M NS NR), where NS is the
number of substrates andNR is the number of reaction
nodes (cf. Girvan and Newman, 2002).

RESULTS
General shape of the hierarchy trees
As an example of hierarchical clustering trees (Fig. 2),
of metabolic and whole-cellular networks we consider
those of the bacteriumTreponema pallidum (T.pallidum).¶

(T.pallidum is the pathological agent of syphilis. A recent
review of its functions in a genomic perspective is given in
Norris et al. 2001.) Most constituents are connected into
a giant component (a cluster whose size scales linearly
with the total number of nodes, see for example, Janson
et al., 2000). Close to the root (Fig. 2, top) the giant
component is still existent, but at heighth ≈ 0.8hmax
of the hierarchy tree the giant component starts to break
into well-defined clusters. When a cluster breaks into
subclusters of similar sizes, we say the hierarchy tree
has ‘community-type ordering’ at the hierarchy level in
question (Fig. 3a). Biochemically this means that the
mass flow within the subclusters are more complexly and
densely routed than between them, and the function of
the original cluster can be understood as composed by
relatively distinct modules (i.e. the subclusters). When, on
the other hand, the cluster breaks into one large subcluster
and many isolated nodes the level has a ‘shell-type
ordering’ (Fig. 3b) where the outer nodes often act as
in/out-flow or buffers to the core-cluster, rather than being
involved in complex interconversion processes. These
concepts designed to signify the extreme cases of a most
or least symmetric splitting of the clusters, intermediate
cases where the cluster splits into subclusters of various
sizes can of course also occur. In the real hierarchy trees
we study, shell-type ordering is frequent in the whole
tree, and dominates the levels closest to the root (with
small h). Community-type ordering, on the other hand,
is only frequent at highh. This lack of a community-type

§ This is needed to make the algorithm consistent and deterministic, and
the A C-implementation of the algorithm, along with a test data set can be
obtained from http://www.tp.umu.se/forskning/networks/meta/.
¶ Hierarchical clustering trees of the other 43 organisms of the WIT database
(Overbeeket al., 2000) used in this study can be seen on http://www.tp.umu.
se/forskning/networks/meta/.
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(b)

(a)

Fig. 2. The hierarchical clustering trees ofT.pallidum. (a) Shows the tree for the metabolic network, (b) shows the whole-cellular network.
The squares represent the subnetwork configuration ath = 0.1hmax (the height indicated by the arrow). Sizes of the squares are proportional
to the size of the clusters they represent.

ordering close to the root of the tree (such as seen in
for example social networks and ecological food-webs;
Girvan and Newman 2002) is related to the highly het-
erogeneous centrality distribution (Jeonget al., 2001) of
cellular biochemical networks: The giant component is
tightly connected by the many paths involving the most
connected substances, ATP, NADH, H2O, and so on. The
core of the metabolism is centred around these most con-
nected substances, hence most well-defined subnetworks
must contain these, but this is precisely to say that the
subnetwork containing these is sure to dominate most lev-
els of the organization. Community-type ordering occurs
when either none of these most connected substances is
central in some subnetwork, or when these substances fall
into different subnetworks. Both of these cases occur in
for exampleT.pallidum (Fig. 2; a functional description
of these subnetworks will be given later):N-acetyl-D-
glucosamine 1-phosphate, D-glucosamine 1-phosphate,
dihydrolipoamide,S-acetyldihydrolipoamide, CoA, and
acetyl-CoA define small subnetworks not including any
of the most connected substances (Fig. 4). The highly
connected orthophosphate and the substances most tightly
connected to it (α-D-ribose 1-phosphate,α-D-ribose
1-phosphate adenine, adenosine, hypoxanthine, and
inosine) define another subnetwork that at a higher level
of organization (lowerh) is joined by other substances (2-
deoxy-D-ribose 1-phosphate, deoxyadenosine, guanine,
and guanosine) to a more loosely connected subnetwork.
The general picture that arises from the study of hierarchy
trees is thus that the cellular biochemical networks consist
of outer shells encapsulating a core of the most connected
substances, with a few well-defined subnetworks at an in-
termediate level of the organization. This picture is (more
or less) the same for all the 43 organisms examined.

(a) (b)

Fig. 3. Schematic picture of the two different orderings in hierarchy
trees. (a) Community-type ordering—same level core-clusters con-
nected by outer parts of the network. (b) Shell-type—a sequence of
core-clusters contained in each other. The squares symbolizes the
reaction nodes that are deleted at the height marked by the arrow.
In (a) three subnetworks of similar sizes gets disconnected when
the reaction nodes are removed. In (b) many individual metabolite
nodes (circles) get isolated.

Statistics of the hierarchical ordering
An immediate impression from looking at the hierarchy
trees of the 43 WIT organisms is that they are similar
in the large scale and more diverse locally. Furthermore,
the shell-type ordering dominates much of the small-h
region of metabolic networks, whereas in the whole cell
networks, community-type ordering also occurs close to
the root. This section aims to quantify these observations.
A third observation is that, ash increases, the tree often
splits in a non-uniform way, so that only individual nodes
or smaller clusters are removed from the largest connected
component at a time.
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Fig. 4. Subnetworks from the metabolic networks ofT.pallidum.
(a) Shows the part of the hierarchy tree that (b) corresponds to.
Grey substance names show where shortest paths to the hubs (most
connected substances of the network) enter.

The large-scale shape of the tree can be measured in
many ways. One simple and informative quantity is the
half-height of the largest clusterh1/2, i.e. the heighth
where the size of the largest clusterS1 has decreased to
half of its original value (For notations see Fig. 1). If
uniform ordering, where clusters break into clusters of
similar sizes, would dominate all levels of organization
(such as the examples from sociology and ecology in
Girvan and Newman, 2002) we expect a very small
relative half-heighth1/2/hmax (h1/2 ∝ loghmax). In
Figure 5 the relative height of the tree whereS1 has
decreased to half of its original value,h1/2/hmax is
displayed. Averaged over all 43 organisms this happens
at h = 0.79(4) hmax for the metabolic networks and
h = 0.76(4) hmax for the whole-cellular networks—a
very narrow region suggesting an universal behaviour (see
Figure 5). Even though the almost constanth1/2/hmax is
not trivially related to other universal features, such as
the constant average shortest-path length (Jeonget al.,
2001), it is consistent with the general picture of a great
diversity of organisms having a very similar large-scale
organization of the biochemical pathways.

To measure the magnitude of community-type ordering
we study theh-evolution of the size of the second largest
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Fig. 5. The relative size of the networkN/Nmax; the ratio between
the largest values of the second largest and largest connected
subgraphsSmax

2 /Smax
1 ; and the relative half-heighth1/2/hmax for

the 43 studied organisms.

clusterS2. In Figure 5Smax
2 /Smax

1 is displayed for all 43
organisms. A large value of this quantity means that the
network at some time has at least two subnetworks of a
large and similar size and thus a pronounced community-
type order. Networks with a highSmax

2 /Smax
1 in fact

also have a highSmax
3 /Smax

1 and so on, so this quantity
works well as a measure of the degree of community-
type order. Figure 5 shows that there is a large variance in
Smax

2 /Smax
1 (with Smax

2 /Smax
1 = 0.06(5) for the metabolic

networks andSmax
2 /Smax

1 = 0.05(3) for the whole-
cellular networks). Although larger databases would be
needed to obtain statistical certainty,Smax

2 /Smax
1 orders

the organisms as archae> bacteria> eukaryotes. It is
interesting to note that eukaryotes have the lowest value.
A more uniform (smallS2) organization is more robust,
which suggests that eukaryote biochemical networks are
more robust than those in bacteria and archae.

Detected subnetworks
To give an explicit example how community- and shell-
ordering are manifested in a metabolic network, we con-
sider two small subnetworks ath = 40 of the hierar-
chy tree ofT.pallidum’s metabolic network (Fig. 2) shown
in Figure 4. These subnetworks contains reactions asso-
ciated with purine metabolism and pyruvate/acetyl-CoA
conversion. The pyruvate-acetyl-CoA part ((i) in the hier-
archy tree, Roman numbers refer to Figure 4a) is a tightly
interconnected, fairly independent subnetwork, while the
purine metabolism part consists of an outer shell (ii) en-
capsulating a smaller core (iii), which is centred around
orthophosphate and has to do with interconversions be-
tween adenosine and related nucleosides. Deoxyadenosine
ends up in the outer shell (ii) while adenosine is located
in the core (iii) because there are two reactions involv-
ing adenosine and orthophosphate, but only one with de-
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Fig. 6. An excerpt of the hierarchy tree of (a)M.pneumoniae and
the corresponding subnetworks associated with sugar import and (b)
DNA replication (c). Symbols are the same as in Figure 4, except
that nodes adjacent to the two clusters are marked with grey circles.
Of the grey nodes’ links, only those between the grey node and
the cluster are shown. One cluster is three reactions away from the
other by, for example, the reaction phosphoenolpyruvate+ ADP
−→ pyruvate+ ATP.

oxyadenosine and orthophosphate. Overall, however, the
subnetworks in this case can be readily seen to represent
metabolic processes of increasing homogeneity.

Weexemplify whole-cellular networks of the bacterium
Mycoplasma pneumoniae (M.pneumoniae), a bacterium
causing respiratory tract infections (see the review by
Principi and Esposito, 2001) in Figure 6. In general the
whole-cellular networks are, perhaps not surprisingly,
even more functionally distinct than the metabolic net-
works. One of the subnetworks (Fig. 6b) is a part of
the bacterial phosphotransferase system, the function of
which is to import carbohydrates into the cell (see Saier,
2001, for an overview). Enzyme III is an older collective
name for enzyme IIA and enzyme IIB. Each of these
enzymes is specific for a certain kind of carbohydrate;
in Figure 6b, we see enzymes specific for mannitol,
glucose, sucrose and fructose, respectively. The other

network (Fig. 6c) has to do with DNA replication. (see for
example, Lewin, 1997, for an overview of DNA replica-
tion). Although both of these subnetwork differ from the
metabolic networks in that the nodes are not metabolites
which are interconverted but rather enzymes that interact
with or are part of macromolecular complexes, they both
nevertheless represent biologically meaningful groups of
substances. Furthermore, the DNA replication subnetwork
is centred around a reaction node with high degree (local
centrality), but relatively low betweenness (global cen-
trality). Thus local, degree-based, algorithms would have
difficulties identifying such a subnetwork. Note that the
subnetwork of Figure 6b is ordered higher (is connected
at a lowerh) in the hierarchy than that in Figure 6c since
the reversibility of the reactions in Figure 6b increases
their betweenness.

SUMMARY AND DISCUSSION
We propose an algorithm for decomposing biochemical
networks into subnetworks based on the global network
structure. The algorithm—a development of the algo-
rithms by Girvan and Newman (2002), and Schuster
et al. (2002)—is purely graph theoretical and uses no
biological criteria (cf. Schilling and Palsson, 2000). The
data we study are the sets of metabolic and whole-cellular
networks of 43 organisms (archae, bacteria and eukary-
otes) from the WIT database. We emphasize the study of
hierarchy trees to get a general view on the organization
of subnetworks. To characterize the hierarchical organi-
zation we introduce (to the biochemical network studies)
the concepts of community- and shell-ordering and
quantitative measures (the relative half-heighth1/2/hmax,
and the relative largest size of the second largest cluster
Smax

2 /Smax
1 ).

The large-scale shape of biochemical network trees is
conspicuously uniform among organisms as manifested in
a universal relative half-height (h1/2 = 0.79(4) hmax for
the metabolic networks andh1/2 = 0.76(4) hmax for the
whole-cellular networks). The spread inSmax

2 /Smax
1 shows

that community-ordering is much more pronounced in
some organisms than in others. A smallSmax

2 /Smax
1 implies

a more robust network, which means that it is a quantity
of potential interest for evolutionary studies (when the
databases reach a size where sufficiently good statistics
can be generated).

Well-defined subnetworks occur at different levels of
organization (at different heights in the hierarchy tree).
This is a strong argument for looking at the whole hier-
archy tree rather than the subnetwork configuration at a
specific level. For the metabolic networks, the dominating
structure at most levels of organization is the largest
connected component. For the whole-cellular network,
non-metabolic subnetworks, such as those representing
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information pathways, signal transduction and the like,
are often branched off from the metabolic circuitry close
to the root of the hierarchy tree. Still, the largest compo-
nent is dominant over a large portion of the tree’s levels.
The general picture of the hierarchical organization that
emerges from our study is thus that biochemical networks
have individual core-clusters of the most connected
substances and their closest related substances; the rest
of the substances are then organized as a more and more
loosely connected outer shell, with the exception of some
well-defined clusters at intermediate levels. The fact that
one cluster dominates most of the organization suggests
that in some contexts it might be deceptive to generalize
properties of subnetworks to the whole network. Thus,
there might be global effects that will be overlooked in
a purely modular description—so for a comprehensive
picture of biochemical networks, one needs to integrate
studies at all levels of description.
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