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Protein translations of over 100 complete genomes are now

available. About half of these sequences can be provided with

structural annotation, thereby enabling some profound insights

into protein and pathway evolution. Whereas the major domain

structure families are common to all kingdoms of life, these are

combined in different ways in multidomain proteins to give

various domain architectures that are specific to kingdoms or

individual genomes, and contribute to the diverse phenotypes

observed. These data argue for more targets in structural

genomics initiatives and particularly for the selection of

different domain architectures to gain better insights into

protein functions.
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Introduction
The past few years have brought fascinating insights into

the evolution of proteins and biological processes from

the analysis of more than 100 completed genomes. This

data set, which embraces all kingdoms of life, now

includes seven eukaryotes, most notably human, mouse

and other well-characterised model organisms, such as

Escherichia coli, yeast and fly. Some of the most revealing

evolutionary analyses exploit the fact that protein struc-

tures are more highly conserved than sequences and

assign genomic sequences to structural families before

performing comparative genome analyses.

However, although improving our ability to trace further

back in evolution, these structure-based studies are still

limited by the apparent scarcity and bias of the current

structural data, as well as by limitations to the sensitivity

of available sequence search algorithms. In this review,

we consider these challenges, highlighting interesting

new developments that improve our ability to map struc-

tural domains onto genome sequences. We also survey

current levels of structural annotation of completed gen-

omes provided by various public resources and briefly

review some interesting new insights these structure-based

data provide on the mechanisms of molecular evolution.

How sparse is the structural data? How many
domain structure families are known and
how many are there likely to be?
In assigning genome sequences to structural families,

we are certainly limited by the current set of known

structures in the Protein Data Bank (PDB [1]), which

contains few transmembrane structures. However,

although the rate of structure deposition (�18 000

entries in the PDB, March 2003) still lags significantly

behind that of sequence determination (18 million

sequences in GenBank, March 2003), various analyses

[2,3�] propose that we now have structural representa-

tives of most of the major domain families in nature. It is

probable that, for globular proteins, this is the case as

fewer than 5% of newly determined structures turn out

to have a novel fold [4], despite structural genomics

initiatives that explicitly target genes with no apparent

structural homologues [5,6].

In fact, Coulson and Moult [2] hypothesise that 80% of

sequence families in nature will belong to as few as 400

folds. They also model the existence of a few very highly

populated ‘superfolds’ (approximately nine), which have

been confirmed by recent observations that the top ten

most frequently recurring folds in completed genomes

currently account for nearly 40% of sequence families for

known structures [4]. However, a large number (�10 000)

of orphan sequences or singletons, described as unifolds,

are also proposed. In support of this, in most genomes

analysed to date, up to 30% of the sequences appear to be

unrelated to any other sequence within their own or any

other genome ([7�,8�], see also below). Some of these

sequences may correspond to sequencing errors.

However, relationships to known families may have been

missed because methods for detecting distant evolution-

ary relationships from sequence data are still limited (see

below). Also, it is already clear that, in some structural

families, considerable divergence can occur in paralogues

[9,10�] and it can be challenging to recognise these

relatives by structure comparison, let alone by methods

relying solely on sequence data. The ability of some folds

to support a much wider range of diverse sequences has

been explored by Shakhnovich and co-workers [11��] in a

rigorous statistical manner.
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Although there are now several domain structure classifica-

tions and neighbourhood resources ([4], [12] for a review,

[13–16]), the number of folds currently identified varies

from about 700 (SCOP) to 850 (CATH) because different

clustering criteria are used and there is some difficulty in

distinguishing folds in some more continuous regions of

fold space [17]. The number of structural superfamilies,

wherein domains are clearly evolutionarily related, appears

to be more consistent at approximately 1800 (� 50).

Current mapping of these structural data onto genome

sequences assigns up to three-quarters of genes or partial

genes in completed genomes to known structural families

([18,19], see also below); this shrinks by about 10–20%

when calculated on a per residue basis. A further 20–30%

are probably membrane-associated proteins, for which

there are currently few representatives in the PDB. From

clustering studies of completed genomes ([7�,20,21], see

also below and Table 1), it appears that up to 20–30% of

the remaining sequences in each genome belong to

genome-specific families or singletons for which no cur-

rent structural data are available (see Figure 1). Although

these may be distant undetected relatives of known

structural families, they could alternatively be completely

novel structures. Intriguingly, a significant proportion of

these are predicted to have low secondary structure con-

tent and are probably disordered [7�,22], but may have an

important role in regulation.

Encouragingly, Figure 2 shows that many of the known

structural families are common to more than one genome,

which means that we can start to decipher the mechan-

isms by which domains have been duplicated and com-

bined to create new protein functions and processes both

within and between the genomes (see below).

The advent of structural genomics initiatives brings hope

that, by carefully targeting sequence families for which no

structural relatives can be detected and coordinating struc-

ture determination, we will expand the repertoire of known

folds further [5,6,23]. Vitkup et al. [24] propose a strategy

for the efficient selection of approximately 16 000 domain

targets to ensure that most genome sequences are suffi-

ciently close to structural homologues (>25% sequence

identity) to allow reliable homology modelling.

However, the increasing number of orphans detected

with the release of each new completely sequenced

genome may mean this is an optimistic estimate. Simi-

larly, detailed analyses of enzyme families have suggested

that, below 60% identity, the function of paralogues can

diverge considerably [25�,26–28] and so considerably

more targets may be required to provide a structural

rationale for functional modification in some functionally

promiscuous protein families.

Exploiting structural data to improve recognition

of domains

In addition to detecting more ancient links between

sequence families, structural data enable the more reli-

able identification of domain boundaries in genes. Map-

ping of structural domains onto whole gene sequences

therefore allows us to explore more accurately the

domain architecture of genes and how they have evolved

by domain duplication and recombination with different

domain partners. More importantly, this then allows

us to understand how changes in domain architecture

modulate function.

It has long been hypothesised that domains are important

evolutionary units, speculation that is supported by

Table 1

Structural predictions for genomes on the World Wide Web.

Name of resource

and group

Main method used URL Complete genomes Ranges structurally

annotated (where available)

E B A % sequences (residues)

Min Max Ave

SUPERFAMILY;

Chothia group

SAM-T99 HMMs superfam.mrc-lmb.cam.

ac.uk/SUPERFAMILY/

15 95 17 33 (24) 76 (67) 55 (48)

PEDANT; Frishman group BLAST pedant.gsf.de/ 7 109 17 – – –

Gene3D; Orengo group pfscape (SAM-

T99 HMMs)

www.biochem.ucl.ac.uk/

bsm/cath_new/Gene3D/

12 91 16 26 (12) 60 (50) 46 (40)

The Genomic Threading

Database; Jones group

GenThreader bioinf.cs.ucl.ac.uk/GTD/ 9 71 15 29 63 46

GeneQuiz;

Ouzounis group

BLAST jura.ebi.ac.uk:8765/

ext-genequiz/

8 52 11 – – –

3D-GENOMICS;

Sternberg group

3D-PSSM

(PSI-BLAST)

www.sbg.bio.ic.ac.uk/

3dgenomics/

4 7 3 (30) (49) (41)

MODBASE; Sali group Modeller alto.rockefeller.edu/

modbase/

7 2 – 14 71 20

FFAS; Godzik group FFAS (PSI-BLAST) bioinformatics.burnham-

inst.org/pages/

– 3 – – – –
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analyses of the completed genome data, which suggest that

at least 60% of genes, possibly as high as 80% in eukaryotes,

are multidomain proteins ([7�,29��,30]). Domain duplica-

tions and recombinations are thought to have occurred

extensively. For the limited data set of known protein

structures in the PDB, of which only about one-third are

multidomain, recent analysis of CATH domains demon-

strated that the majority (�85%) recur in different multi-

domain contexts [4].

Automatic recognition of domains in multidomain pro-

teins can be very difficult, even using structural data,

although some interesting new approaches promise much

greater accuracy [31]. From a sequence perspective,

several resources attempt to locate domains by exploiting

domain recurrence and clustering sequences from com-

pleted genomes and large sequence databases [20,21,32].

Some of these approaches explicitly combine sequence-

based predictions with structural data, which might be

expected to help in ‘bootstrapping’ domain assignments.

Although these resources attempt to identify domain-

based families in genomes, the number of families they

describe varies considerably from 10 000 [20] to 77 000

[31], with up to 170 000 singletons. The recent clustering

of 119 genomes for the Gene3D resource [33�] found

approximately 50 000 protein families with potentially

unique domain architectures. These comprise different

combinations of 1400 structural domains from CATH and

5000 gene families from Pfam (which may contain more

than one structural domain) (see Figure 3). There are also

�150 000 singletons unassigned to any family.

Figure 1
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Domain assignments by source — the source of the domain assignments within a genome, as a percentage of the total number of genes. Columns

represent domain assignments by CATH and some Pfam (red), and Pfam only (blue). The organism names have been abbreviated to a three-letter

code as follows: Ape, Aeropyrum pernix; Afu, Archeoglobus fulgidus; Hsp, Halobacterium sp NRC-1; Mja, Methanococcus jannaschii; Mka,

Methanopyrus kandleri AV19; Mac, Mathanosarcina acetivorans; Mma, Methanosarcina mazei; Mth, Methanobacterium thermoautotrophicum;

Pae, Pyrobaculum aerophilum; Pab, Pyrococcus abyssi; Pfu, Pyrococcus furiosus; Pho, Pyrococcus horikoshii; Sso, Sulfolobus solfataricus; Sto,

Sulfolobus tokodaii; Tac, Thermoplasma acidophilum; Tvo, Thermoplasma volcanium; Aae, Aquifex aeolicus; Bsu, Bacillus subtilis; Ctr, Chlamydia

trachomatis; Cpn, Chlamydophila pneumoniae CWL029; Cte, Chlorobium tepidum TLS; Dra, Deinococcus radiodurans; Eco, Escherichia coli K12;

Fnu, Fusobacterium nucleatum; Hin, Haemophilus influenzae Rd; Hpy26695, Helicobacter pylori 26695; HpyJ99, Helicobacter pylori J99; MtuCDC,

Mycobacterium tuberculosis CDC1551; MtuH37, Mycobacterium tuberculosis H37; Mge, Mycoplasma genitalium; Mpn, Mycoplasma pneumoniae;

PaePAO1, Pseudomonas aeruginosa PAO1; Rpr, Rickettssia prowazekii; Sau, Staphylococcus aureus N315; Sco, Streptomyces coelicolor A3(2); Syn,

Synechocystis sp PCC 6803; Tel, Thermosynechococcus elongates; Tma, Thermotoga maritima; Tpa, Treponema pallidum; Cel, Caenorhabditis

elegans; Dme, Drosophila melanogaster; Ecu, Encephalitozoon cuniculi; Mmu, Mus musculus; Pfa, Plasmodium falciparum 3D7.
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Exploiting structural data to detect evolutionary

relationships between domains

Sensitive structure comparison algorithms capable of

detecting very distant relatives were first developed in

the late 1980s and many methods now exist [34], most

exploiting common methods and features. Perhaps the

most significant recent developments have been improve-

ments to the protocols measuring similarities and assessing

statistical significance. Although many resources have long

exploited z-scores for highlighting the most significant

matches, recent attempts have provided better statistical

models of the extreme value distributions that are returned

by database scans [17,35].

However, structural similarity is not sufficient to guaran-

tee common ancestry, as there may be physical constraints

that limit the number of energetically acceptable folds.

Evolutionary relationships are usually confirmed by the

existence of shared sequence motifs or evidence of func-

tional similarity (see the review by Jackson, Westhead

and co-workers in this issue). Holm and co-workers [36]

successfully exploit neural networks that combine multi-

ple data (e.g. structure similarity, sequence similarity,

matching of functional key words) to perform large-

scale automatic identification of homologues in the Dali

domain database.

What sequence-based methods are used to
assign genome sequences to structural
families and how well do these perform?
Although many small bacterial genomes comprise fewer

than 5000 genes, larger eukaryotic genomes contain up to

35 000 genes, as in the case of Takifugu rubripes. There-

fore, methods for scanning genes against structural

families need to be sensitive, selective and also very fast.

To evaluate these approaches, several groups have used

structural data sets derived from the SCOP and CATH

domain classifications to test the sensitivity and selectiv-

ity of the methods [18,37–39,40�]. Because structure is so

Figure 2
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Domain assignments by kingdom — the distribution of domain assignments across the three kingdoms of life, as a percentage of the total domain

assignments for each genome. Columns represent domains present in all three kingdoms (blue), two out of three kingdoms (red), one kingdom (yellow)

or unique to the genome (black). The organism names have been abbreviated to a three-letter code as follows: Ape, Aeropyrum pernix; Aae, Aquifex

aeolicus; Afu, Archeoglobus fulgidus; Bsu, Bacillus subtilis; Bbu, Borrelia burgdorferi; Cel, Caenorhabditis elegans; Cje, Campylobacter jejuni; Cpn,

Chlamydia pneumoniae; Ctr, Chlamydia trachomatis; Eco, Escherichia coli; Hin, Haemophilus influenzae; Hpy, Helicobacter pylori; Mth,

Methanobacterium thermoautotrophicum; Mja, Methanococcus jannaschii; Mtu, Mycobacterium tuberculosis; Mge, Mycoplasma genitalium; Mpn,

Mycoplasma pneumoniae; Nme, Neisseria meningitidis; Pab, Pyrococcus abyssi; Rpr, Rickettssia prowazekii; Sce, Saccharomyces cerevisiae; Ssp,

Synechocystis sp; Tma, Thermotoga maritima; Uur, Ureaplasma urealyticum; Vch, Vibrio cholerae; Xfa, Xylella fastidiosa.
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well conserved, these classifications provide data sets of

validated structural relatives that are sufficiently distant

(e.g. <25% sequence identity) to present a real challenge

for sequence-based methods.

Receiver operator curves are usually generated contrast-

ing the selectivity and sensitivity of various methods.

These compare the increasing coverage (or number of

remote homologues identified) of different sequence

search methods with increasing numbers of errors (e.g.

50 false positives in the case of ROC50 curves [41]).

Recent implementations of these benchmarking proto-

cols take account of the bias of current classifications

towards some structural families by ensuring that the

data set contains a single pair of relatives from each

family [42].

Although the fastest sequence search methods available

(the most widely used of which is the BLAST suite of

methods) are based on pairwise alignment, they are not as

powerful as 1D-profile-based methods, such as PSI-

BLAST [41], or methods employing hidden Markov

models (HMMs) [18,43]. These owe their success to their

ability to capture information on residue propensities at

different positions in the protein. Propensities are derived

from statistical analysis of a multiple sequence alignment

Figure 3
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Domain architectures by kingdom — the distribution of domain architectures across the three kingdoms of life. Columns represent domains present in

all three kingdoms (blue), two out of three kingdoms (red), one kingdom (yellow) or unique to the genome (black). The organism names have been

abbreviated to a three-letter code as follows: AtuC, Agrobacterium tumefaciens str C58 Cel; AtuU, Agrobacterium tumefaciens str C58 UW; Bha,

Bacillus halodurans; Bme, Brucella melitensis; Bap, Buchnera aphidocola; Cmu, Chlamydia muridarum; Cte, Clostridium tetani E88; Cef,

Corynebacterium efficiens YS-314; EcoCF, Escherichia coli CFT073; Eco157a, Escherichia coli O157a; Eco157b, Escherichia coli O157b; Fnu,

Fusobacterium nucleatum; Hsp, Halobacterium sp; Lpl, Lactobacillus plantarum; Lin, Leptospira interrogans; Mka, Methanopyrus kandleri; Mac,

Mathanosarcina acetivorans; Mma, Methanosarcina mazei; Mle, Mycobacterium leprae; Mtu, Mycobacterium tuberculosis CDC 1551; Mpe,

Mycoplasma penetrans; Mpu, Mycoplasma pulmonis; NmeMC58, Neisseria meningitidis MC58; NmeZ2491, Neisseria meningitidis Z2491; Nsp, Nostoc

sp; Oih, Oceanobacillus iheyensis; Ppu, Pseudomonas putida; Pfu, Pyrococcus furiosus; Son, Shewanella oneidensis; Sfl, Shigella flexneri; Sme,

Sinorhizobium meliloti; SauMu50, Staphylococcus aureus Mu50; SauMW2, Staphylococcus aureus MW2; SauN315, Staphylococcus aureus N315;

Sep, Staphylococcus epidermidis; Sag2603V, Streptococcus agalactiae 2603V/R; SagNEM316, Streptococcus agalactiae NEM316; SpnR6,
Streptococcus pneumoniae R6; SpnTIGR4, Streptococcus pneumoniae TIGR4; SpyM1, Streptococcus pyogenes M1; SpyMGA, Streptococcus

pyogenes MGA; Sco, Streptomyces coelicolor; Sto, Sulfolobus tokodaii; Tte, Thermoanaerobacter tengcongensis; Tel, Thermosynechococcus

elongates; Tma, Thermotoga maritima; Xax, Xanthomonas axonopodis; Xca, Xanthomonas campestris; Xfa, Xylella fastidiosa; Ype, Yersinia pestis.
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containing divergent sequence relatives from the protein

family. For example, in a 1D-profile, propensities are

frequently encoded in a position-specific scoring matrix

(PSSM), which typically contrasts the frequency of amino

acid residues at a given position in the alignment with the

frequency expected by chance.

Recent developments in this field, and currently among

the most popular methods for genome annotation, are

powerful iterated search programs such as PSI-BLAST

[41], SAM-T99 and SAM-T2K [38,43], which build their

own multiple alignment by iteratively searching the data-

base for ever more remote homologues, adjusting the

PSSM or state model with each iteration. These programs

have been extensively benchmarked using SCOP data sets

[37,38]. Currently, about 50–60% of very distant relatives

(<25% sequence identity) can be recognised using these

approaches [18].

Related algorithms, such as RPS-BLAST [16], have

recently emerged that significantly reduce the scanning

time for large databases and genomes. By contrast,

increased sensitivity at the cost of speed has been

achieved by developing profile-profile protocols that com-

pare libraries of profiles to detect evolutionary links [42].

These have also been shown to improve the quality of

the alignment, which is important for assessing any resi-

due conservation that may be indicative of functional

similarity. Other improvements in the performance of

profile-based methods, to date, have been achieved by

combining structural data or predicted structural data

regarding secondary structure conformation, accessibility

or residue contacts [44–46].

Generally, although fold recognition methods such as

threading and related approaches have been shown to

be more sensitive at recognising remote homologues

[47], they are often slower and less amenable to large-

scale genome annotation. However, several have been

applied to provide annotations particularly for smaller

bacterial genomes ([22]; see Table 1). A recent critical

assessment of structure prediction (CASP4) in the US

demonstrated the value of combining the results from

several prediction methods [48], although this is another

strategy that is not yet very amenable to whole genome

annotation.

Similar problems exist for large-scale homology model-

ling, another computer-intensive procedure. Although

some whole genome scale modelling has been performed

[49–51], again this is largely restricted to small bacterial

genomes. Of course, the models they provide will be

valuable for analysing close relatives in other genomes. As

discussed above, an important issue in providing high-

quality models for inferring functional properties or pre-

dicting ligand binding is the accuracy of the alignment.

Threading algorithms often give the best alignments,

although some profile and HMM approaches also perform

well [22,40�].

It is clear that recent web-based initiatives (such as

ENSEMBL [52] and InterPro [53], which display protein

family predictions from multiple sources) will be impor-

tant resources for genome annotation in the future. Both

ENSEMBL and InterPro have recently been funded to

include domain structure annotations from SCOP and

CATH in future versions, displayed using the DAS

technology [54].

What proportion of genome sequences can
be assigned to structural families and how
are these families distributed within
genomes and across kingdoms?
Table 1 lists some public resources displaying genome

annotations and summarises recent coverage of represen-

tative genomes in each kingdom. The variation in coverage

reflects differences in the methods used to map structural

domains onto the genome sequences, the sequence data-

bases used in building the iterated profiles or HMMs, and

the structural family classifications and fold libraries

employed. Nevertheless, it is very encouraging to see that

the SUPERFAMILY resource [18,55��] assigns nearly 50%

of the genes (on a per residue basis) of many genomes to

known structural families.

Several structural classification resources now provide

profiles or HMMs of representative structures for map-

ping onto completed genomes, together with information

on the proportions of genomes that can be annotated in

this way (Table 1). For one of the most comprehensive

resources, the SUPERFAMILY database, built from

SCOP families, genome coverage ranges from 30 to

76% (on a per gene basis) [18] for more than 100 com-

pleted genomes. The current statistics for the equivalent

Gene3D resource [33�], based on CATH structural

families, are shown in Figures 1 and 2, and Table 1.

The additional coverage gained by using SAMT-99 mod-

els of Pfam families is also plotted in Figure 1 and shows

that a significant percentage of genes or partial genes (up

to 85%) can now be assigned to a structure- or sequence-

based family, from which some functional information

can be inferred.

Several groups have published analyses describing and

modelling the distributions of structural families within

and between genomes [3�,29��,30,33�,56,57�,58–60]. The

uneven population of domain families, first noted in the

structural classifications, is mirrored in the genomes,

whereby most families occur only a few times within a

given genome but a few families recur extensively (see

Figure 4). This phenomenon, which indicates a power

law relationship, was first commented on by Huynen [56]

and has been fitted to a range of power law functions

[57�,58,59]. It suggests a model whereby the ‘fit’ get
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‘fitter’ and domains duplicated early in evolution will

increasingly dominate the population. Including selec-

tionist pressure in this model would then favour the

retention of duplicated domains that perform important

biochemical activities.

Wolf et al. [58] recently used the Pareto function to

simulate a model that captures the birth (gene duplica-

tion), death (gene loss) and innovation (new protein) of

different domains. However, this entirely stochastic

model fails to account completely for the observed dis-

tribution, although it comes close. The absence of any

selection pressure seems a particular failure, as many of

the most recurrent domains have important generic func-

tions (e.g. in providing energy or redox equivalents for

catalysis, or in responding to cellular signals and binding

to DNA [29��,30]; see Figure 5).

As many of the genome sequences are multidomain

proteins and as the function of a protein is usually

determined by both the nature of these domains and

their assembly in three dimensions, it is also important to

consider the distribution of specific domain architectures

across genomes. Interestingly, Apic et al. [29��] have

shown that another power law exists in the pairing of

domains — most domain families are partnered with only

a few other domains, whereas others are very promiscu-

ous, combining with many different partners (see further

discussion below).

What do we learn about the evolution of
protein functions and processes by
assigning genomes to structural families?
Domain structures can be viewed as a parts list for

biology [59], but to really understand how the diverse

phenotypes have evolved, we must understand the inter-

actions of these parts and how they are assembled into

complex functional units, pathways and signalling pro-

cesses. This is complicated by the fact that the functional

characteristics of these domain modules or ‘parts’ can

sometimes vary considerably between relatives, particu-

larly between paralogous domains [25�,26,27], and rela-

tively high levels of sequence and structural similarity

are required to confidently transfer functional properties

between relatives in some protein families [25�,26–

28,60,61�,62�].

Interestingly, even in enzyme families where functions

appear to vary considerably, these changes are more

frequently associated with substrate specificity than with

fundamental changes in the chemistry of the reaction

[25�]. Similar chemical intermediates are often detected.

Although catalytic residues enabling the reactions may

be contributed by different positions in the protein

Figure 4
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Power law behaviour is observed for the TribeMCL [71] clustering (inflation value ¼ 3) of 119 complete genomes into families. These families correlate

strongly with protein domain architecture. For power law behaviour, the number of families (N) with a given occurrence (F) decays according to

the equation N ¼ aFb. This distribution has a linear appearance when plotted on double-logarithmic axes, where �b describes the slope. The
best-fit power law function is displayed and the value b ¼ 1:6 is typical of the power law behaviour observed for the occurrence of families,

superfamilies and folds in genomes.
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sequence, they are usually co-located in three dimensions

[63]. Structural analyses of functionally variable families

reveal that specificities can be modulated by significant

structural embellishments in the region of the active site,

by changes in the domain architecture and by variations in

the oligomerisation states of relatives [25�].

Very frequently, domain function is modulated by changes

in a domain’s partners. In this context, the elegant analyses

of Teichmann and co-workers [29��,30], using SCOP-

based annotations, reveal the manner in which the limited

repertoire of domain families has been duplicated and

combined in many different ways through recombination,

fusion and fission. Although there are currently more than

12 000 different domain architectures identified, only a

small percentage of these are common to all kingdoms and

the phenotypic diversity exhibited across kingdoms cor-

relates with variations in domain architecture. On average,

between 60 and 70% of domain architectures identified

within a particular genome are unique to the kingdom (see

Figure 3). However, these are predominantly assembled

from domains that are common across kingdoms [29��].

Only one-third of domain families do not appear to com-

bine with any other domain [29��].

There also appear to be some highly recurrent domain pairs

or triplets common across kingdoms, again assembled from

the common domain families [29��]. Interestingly, most

domain pairs are only seen in one orientation to each other

[64�]. The evolution of an interface and function is too

costly to evolve twice in two orientations and it is simpler to

copy and modify the domain pair in one orientation.

In other words, recombination between common domains

has been a major factor in the evolution of kingdom-specific

and species-specific functions. These common domains,

which recur frequently in genomes, also tend to have

multiple domain partners; Teichmann et al. propose that

they may therefore be more ancient, allowing more evolu-

tionary time for recombination. Amongst the most common

domains are the P-loop hydrolases (see Figure 5), which

provide energy for motion and reactions by hydrolysing

ATP and GTP. Rossmann folds, also common, provide

oxidising or reducing energy by oxidation or reduction of

Figure 5
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NAD(P). In metazoa, families involved in signal transduc-

tion are amongst the most versatile, as transcription/trans-

lation is tightly regulated by nucleic-acid-binding domains,

which combine with other domains responsible for the

specificity of regulation [29��] (see also below).

Only a small fraction of multidomains comprise tandem

repeats. Multicellular eukaryotes tend to have much

longer repeats than unicellular and most of these either

have structural roles or are involved in cell adhesion, or

complex signalling and regulatory mechanisms [29��].

Structural annotation of the genomes of some experi-

mentally well-characterised model organisms, most nota-

bly E. coli and yeast, has also enabled the analysis of

pathway evolution [65�,66–68,69�]. The ubiquitous

power law prevalent throughout biology is also apparent

in pathway evolution. Most families occur on a few

related pathways [67,68], whereas a few families occur

on many pathways. Again, these are domains supplying

generic functions (e.g. ATP binding or provision of redox

equivalents for catalysis).

Rison et al. [65�] comment that, overall, the data suggest

that several pathway evolution mechanisms may occur in

concert, although the ‘Jensen’ patchwork model of evolu-

tion is favoured. In this, enzymes are largely recruited to a

pathway for the specific chemistry they perform. A very

limited ‘Horowitz’ model is also apparent, involving some

serial recruitment of homologues along a pathway. This is

supported by Alves and co-workers’ analysis [68], in which

they reviewed 12 genomes and treated pathways as con-

nected graphs with networks built around metabolites.

For some enzymes, such as transferases and synthetases,

Alves and co-workers [68] found quite a high proportion

(�60%) of homologues within two steps of each other in

the pathway network. Interestingly, in all organisms,

there is an association between similar enzyme chemistry

and proximity in the network, regardless of homology.

Duplicated enzymes are more likely to be added locally in

the network, presumably because that will cause less

disruption — assuming that the new enzyme has a similar

function to the old [68].

Detailed comparison of small-molecule metabolism

between yeast and E. coli by Jardine et al. [69�] revealed

that 50–60% of the enzymes are common between the

organisms and over 80% of the pathways are shared. Two-

thirds of these common enzymes have the same domain

architectures, despite at least one billion years of evolu-

tionary separation.

The extent of domain duplication and combination in

signalling pathways is revealed by a recent analysis of

transcription factors in E. coli [70]. This showed that

three-quarters have arisen by gene duplication, compris-

ing mostly two-domain proteins with a common DNA-

binding domain (of which there are 11 families) combined

with a distinct regulatory domain that frequently binds

small molecules [70].

Conclusions
In summary, the mapping of structures to completed

genome sequences is gradually revealing the intricate

mechanisms by which diverse pathways and phenotypes

can evolve from an apparently limited repertoire of

domain modules. Structural genomics initiatives will help

expand our library of these modules. In combination with

improvements in homologue detection methods, these

data will assist genome analyses not only by revealing

more ancient links but also by elucidating domain recom-

bination and the manner by which it has contributed to

the glorious panoply of phenotypes in nature.

Update
Since the submission of this review, additional highly

relevant papers have been published [72�,73].
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