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Nitrogen Fixation by Symbiotic
and Free-Living Spirochetes
T. G. Lilburn,1,2 K. S. Kim,3 N. E. Ostrom,4 K. R. Byzek,3

J. R. Leadbetter,5 J. A. Breznak3,2*

Spirochetes from termite hindguts and freshwater sediments possessed ho-
mologs of a nitrogenase gene (nifH) and exhibited nitrogenase activity, a
previously unrecognized metabolic capability in spirochetes. Fixation of 15-
dinitrogen was demonstrated with termite gut Treponema ZAS-9 and free-living
Spirochaeta aurantia. Homologs of nifH were also present in human oral and
bovine ruminal treponemes. Results implicate spirochetes in the nitrogen nu-
trition of termites, whose food is typically low in nitrogen, and in global nitrogen
cycling. These results also proffer spirochetes as a likely origin of certain nifHs
observed in termite guts and other environments that were not previously
attributable to known microbes.

Termites are important terrestrial decompos-
ers of Earth’s major form of biomass: ligno-
cellulosic plant material and residues derived
from it, e.g., humus (1). However, the car-
bon-rich but typically nitrogen-poor character
of the termite diet has led many species into
symbiotic interactions with gut microbes to
augment their nitrogen economy. These inter-
actions include the recycling of excretory
(uric acid) nitrogen and the acquisition of
new nitrogen through N2 fixation (2). In
wood-feeding termites, whose food may con-

tain as little as 0.05% nitrogen (dry weight
basis), N2 fixation can supply up to 60% of
the nitrogen in termite biomass (3). Unfortu-
nately, our understanding of N2-fixing mi-
crobes in termites is meager: only a few
strains have been isolated (Citrobacter freun-
dii, Pantoea agglomerans, and Desulfovibrio
spp.), and their contribution to N2 fixation in
situ is questionable (2). Indeed, recent sur-
veys of the nitrogenase iron-protein encoding
gene (nifH) in termite guts implied that the
diversity of N2-fixing microbes was far great-
er than that inferred by pure culture isolation
(4–6), and most of the deduced amino acid
sequences of NifH differed from those of
known microbial taxa (7).

A long-recognized, major, and morphologi-
cally distinct component of the termite gut mi-
crobiota are spirochetes, whose cloned 16S
rDNA gene sequences group them within the
genus Treponema (8). Recently, the first pure

cultures of these forms were obtained (9). Iso-
lated strains ZAS-1, ZAS-2, and ZAS-9 were
also phylogenetically affiliated with the trepo-
nemes (Fig. 1), and all three strains produced
acetate as a major fermentation product (10).
ZAS-1 and ZAS-2 could make acetate from
H2 1 CO2 (9), a mode of energy-yielding me-
tabolism previously unknown in the phylum
Spirochaetes (11). Hence, they are important to
the nutrition of termites, which use microbially
produced acetate as a major carbon and energy
source (2). Having these spirochetes in culture
prompted us to examine whether they might
also fix N2 and thereby contribute to termite
nitrogen economy as well. To do this, we ex-
amined their genomic DNA for the presence of
nifH (12) and their ability to fix N2 (13).

Two nifH homologs were found in each
termite gut treponeme. nifH homologs were also
found in the bovine ruminal treponeme, Trepo-
nema bryantii; the human oral treponemes,
Treponema denticola and Treponema pectino-
vorum; and the free-living spirochetes, Spiro-
chaeta aurantia, Spirochaeta zuelzerae, and
Spirochaeta stenostrepta. The deduced amino
acid sequence of each NifH had motifs typically
present in the nitrogenase iron-protein, includ-
ing conserved cysteines at positions (Klebsiella
pneumoniae numbering) 86, 98, and 133 [and
39, for nifH clones obtained with the IGK for-
ward primer for polymerase chain reaction
(PCR)] and an arginine at position 101, which is
a site for reversible inactivation by adenosine
diphosphate–ribosylation in some bacteria (14).
However, the NifHs were phylogenetically di-
verse and not congruent with spirochete phylog-
eny based on 16S rRNA sequences, which
groups all spirochetes in a single phylum. This
lack of congruence extended to multiple NifH
homologs in the same spirochete (Fig. 2). One
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homolog from each termite gut treponeme was
grouped in a deeply branching cluster (IV) that
included NifH-like proteins from eight Eury-
archaeota. However, it is not clear that proteins
in cluster IV function only, or at all, in N2

fixation (15).
We could not demonstrate nifH in the

halophile, Spirochaeta halophila, or in the
swine pathogen, Brachyspira (Serpulina)
hyodysenteriae. Furthermore, no structural
genes for nitrogenase were identified in the
completely sequenced genomes of the syph-
ilis spirochete, Treponema pallidum, or the
Lyme disease spirochete, Borrelia burgdor-
feri (16) (Fig. 1).

The presence of nifHs in S. aurantia, S.
zuelzerae, and termite gut treponeme ZAS-9
was unambiguously correlated with N2 fixation,
as shown by their exhibition of N2-dependent
growth and NH4

1-repressible acetylene reduc-
tion (AR) activity (Fig. 3 and Table 1). For S.
aurantia and ZAS-9, fixation of 15N2 was also
demonstrated. S. aurantia grew in a chemically
defined medium with N2 as nitrogen source
(Fig. 3A), so the 15N content of cells (89.0129

atom % excess) was close to that of the 15N2

used (99.3094 atom % excess), reduced only by
the 14N in cells carried over with the 10% (v/v)
inoculum pre-grown on unlabeled N2. The spe-
cific activity of nitrogenase in S. aurantia (Ta-
ble 1) was sufficient to provide virtually all the
nitrogen needed by cells [14.7 mg of N per
(hour 3 mg protein)] during exponential growth
on N2 [doubling time 5 17.3 6 2.2 hours (n 5
4)], assuming that protein and nitrogen consti-
tute 55% and 14%, respectively, of the cell dry
mass (17). By contrast, ZAS-9 and S. zuelzerae
could not be grown without yeast autolysate
(YA), which itself was a source of fixed nitro-
gen (18). Nevertheless, nitrogen-limited growth
could be achieved by using media containing
2% (v/v) YA with no added NH4Cl. AR activity
in these species commenced with the onset of
N2-dependent growth, which was marked by the
divergence in growth curves of cultures under
N2/CO2 versus those under Ar/CO2 (Fig. 3, B
and C). Thus, the 15N content of ZAS-9 (6.3789
atom % excess) grown under 15N2/CO2 was less
than that for S. aurantia, because it was diluted
by 14N assimilated from YA. On the basis of the
difference in cell yield of ZAS-9 grown under
N2/CO2 versus Ar/CO2 (Table 1), ZAS-9
should have contained about 38 atom % 15N if

15N2 were the sole nitrogen source during N2-
dependent growth (19). However, the observed
value of 6.3789 atom % excess implies that N2

fixation enabled cells to assimilate nitrogenous
compounds in YA that would otherwise be uti-
lized poorly or not at all. A similar situation may
exist for S. zuelzerae, because nitrogenase activ-
ity [2.3 mg of N2 per (hour 3 mg protein); Table
1] during N2-dependent growth (doubling time
;21 hours) (Fig. 3C) would supply only 20% of
the nitrogen needed for each doubling in bio-
mass. Therefore, nitrogenase activities reported
in Table 1 for these two spirochetes are probably
not the maximum attainable by cells.

O2 (0.01 atm) immediately and completely
inhibited AR by S. aurantia (a facultative anaer-
obe) and by S. zuelzerae and ZAS-9 (strict
anaerobes), implying that N2 fixation by ZAS-9
in situ might be inhibited if cells swam into the
microoxic region near the hindgut epithelium
(20). However, the central region of hindguts
may not be an ideal refuge because concentra-
tions of H2 [an inhibitor of N2 reduction, whose
inhibitory constant (Ki) typically ranges from
0.03 to 0.2 atm (21, 22)] can reach 50,000 parts
per million volume (;0.06 atm) (20). Termite
gut spirochete nitrogenases may be relatively
resistant to inhibition by H2. In this regard, it is

Fig. 1. Phylogenetic tree inferred by maximum
likelihood analysis of near–full-length 16S
rDNA sequences of termite gut Treponema
strains ZAS-1, ZAS-2, and ZAS-9 (bold), repre-
sentative known spirochetes, and spirochetal
16S rDNA clones obtained directly from gut
contents of the termites (clone prefix): Zooter-
mopsis angusticollis (ZAS), Reticulitermes flavi-
pes (RFS), and Nasutitermes lujae (NL). The
homologous sequence from E. coli was used as
an outgroup. Scale bar represents units of evo-
lutionary distance and is based on sequence
divergence (40). Symbols are as follows: n or ▫,
nifH (present or not detected, respectively); ●
or C, nitrogenase activity (present or not de-
tected, respectively). Absence of a symbol in-
dicates that the spirochete was not examined
for the property.

Fig. 2. Unrooted
maximum likelihood
phylogenetic tree of
deduced NifH sequenc-
es from spirochetes
(bold, this study), from
other representative
prokaryotes, and from
selected termite gut ( T
Gut) and other envi-
ronmental nifH clones.
T Gut clones prefixed
“NKN-RT” (highlight-
ed) are known to be
expressed in situ (6).
Groups I through IV
(shaded; composition
adjacent) were ob-
served in a larger
“comprehensive tree”
(40) and are in accord
with previously pub-
lished trees, but there
was no support for
group III when the
smaller tree was in-
ferred using maximum
likelihood. From the
comprehensive tree,
environmental clones
most closely related
to spirochete NifHs,
as well as sequences
that illustrated the
phylogenetic breadth of each cluster, were selected for inclusion in the smaller tree. Numbers to
the right of selected nodes indicate support values for that node as estimated by quartet puzzling.
The scale bar represents 0.1 expected substitution per amino acid position. Abbreviations are as
follows: A, Azospirillum; Az, Azotobacter; C, Clostridium; Ch, Chlorobium; D, Desulfovibrio; Ms,
Methanosarcina; S, Spirochaeta; T, Treponema. Source of T Gut clones: CFN, Coptotermes formo-
sanus; GFN, Glyptotermes fuscus; NKN, Neotermes koshunensis; PNN, Pericapritermes nitobei; TDY,
Reticulitermes speratus.
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noteworthy that several spirochetal NifHs, in-
cluding those of ZAS-2 and ZAS-9, group in
assemblage III (Fig. 2) with the conventional
nitrogenase of Clostridium pasteurianum, which
has a high Ki for H2 inhibition of N2 reduction
(0.5 atm) (22).

Analogous experiments with ZAS-1 and
ZAS-2 (both of which required YA) revealed no
enhancement of growth in the presence of N2

and only trace levels of nitrogenase (Table 1),
which were nevertheless detectable even when
ZAS-1 and ZAS-2 were grown in the presence

of 10 mM NH4Cl. Omission of molybdenum
from the medium or its replacement by 10 mM
NaVO3, or inclusion of 1 mM homocitrate (23)
with various trace metal mixtures, did not en-
hance growth under N2 or AR activity of ZAS-1
or ZAS-2. Nor was AR activity increased by
resuspension of cells in YA-free (non–growth
supporting) medium. A trace level of AR activ-
ity was also observed with S. stenostrepta and
was accompanied by production of both ethyl-
ene and ethane, implying the activity of an
alternative nitrogenase (24). This is consistent

with the phylogenetic placement of S. steno-
strepta NifH1 in group II (Fig. 2) among the
iron-proteins of alternative nitrogenases of Azo-
tobacter vinelandii, C. pasteurianum, and Meth-
anosarcina barkeri. However, such activity was
only observed occasionally, and then only from
cells in stationary phase of NH4

1-limited cul-
tures. No evidence for N2-dependent growth or
nitrogenase activity was obtained with T. bry-
antii growing in a chemically defined medium
under NH4

1-limitation, nor was AR observed
with cells of T. denticola pre-grown in a com-
plex medium and resuspended in a nitrogen-
deficient, non–growth supporting medium for
assay.

Our results reveal a new dimension to the
metabolic diversity within the Spirochaetes and
now extend to 6 (of 18) the number of phyla
within the domain Bacteria that contain N2-
fixing representatives (11, 25). They also reveal
a role for spirochetes in termite nitrogen nutri-
tion. Two observations suggest that N2 fixation
by spirochetes is important to termite nitrogen
economy. First, spirochetes are unusually abun-
dant in termite guts, accounting for as much as
50% of all prokaryotes (26). Second, many of
the spirochete NifHs characterized in this study
were identical or nearly identical to NifH clones
obtained from a variety of termites, including
NifHs known to be expressed in termite guts
(Fig. 2), suggesting a spirochete origin for the
latter.

The potential contribution of spirochetes to
the N2 fixation activity exhibited by termites can
be estimated assuming that the spirochete pop-
ulation is about 2 3 106 cells per ml hindgut
contents [this value is one that corresponds to
half of the direct microscopic count of pro-
karyotes (26–28)] and that one out of every
three spirochetes fixes N2 at a rate of 7.5 3
10210 mg of N2 per (hour 3 cell), i.e., midway
between the per-cell fixation rates observed for
ZAS-9 [2.8 3 10210 mg of N2 per (hour 3 cell)]
and S. aurantia [12.1 3 10210 mg of N2 per
(hour 3 cell)] (29, 30). When calculated for
worker larvae of Zootermopsis angusticollis (the
species from which ZAS strains were isolated),
which weigh 30 mg, have a gut volume of ;10
ml, and exhibit fixation rates that range from
0.06 to 0.41 ng of N2 fixed per hour (2), the
spirochete-specific contribution could be as
much as 5 ng of N2 per hour. This is well above
that needed to account for the rate exhibited by
live insects. For Coptotermes formosanus (;3
mg fresh weight; gut volume ;1 ml), a species
exhibiting some of the highest recorded rates of
N2 fixation [4.6 ng of N2 per hour; (2)], the
contribution would still be substantial (0.5 ng of
N2 per hour). This is probably another reason
why elimination of spirochetes from guts de-
creases termite survival (31).

Our results also reveal a heretofore unrecog-
nized role for free-living spirochetes in global N
cycling. Spirochetes are ubiquitous in aquatic
habitats (32), and considering the similarity of

Fig. 3. N2-dependent growth optical density (OD)
and rate of acetylene reduction to ethylene (C2H4)
exhibited by S. aurantia in a chemically defined
medium lacking NH4Cl (A), and by Treponema strain
ZAS-9 (B) and S. zuelzerae (C) in media containing a
growth-limiting amount of yeast autolysate, but no
added NH4Cl (13). Incorporation of 5 to 10 mM
NH4Cl into media resulted in increased growth
yields, but complete suppression of acetylene reduc-
tion activity (not shown).

Table 1. N2 fixation by free-living spirochaetas and termite hindgut treponemes. Cell yields are the
mean 6 SD for cells grown in NH4

1-free medium (S. aurantia) or in media containing a growth-limiting
amount of yeast autolysate, but no added NH4Cl (other strains). Nitrogenase activity is the mean of two
determinations on cells: (i) growing exponentially in the N2-dependent phase of growth (S. aurantia, S.
zuelzerae, Treponema strain ZAS-9) and (ii) growing under NH4

1-limitation under N2/CO2 (Treponema
strain ZAS-1 or ZAS-2) (13). Asterisk indicates an activity , 0.1.

Spirochete
Cell yield Nitrogenase activity

[mg N2 (hour 3 mg
protein)21]Gas phase Protein (mg /ml)

S. aurantia N2 34.9 6 4.2 (n 5 4) 13.8 6 3.0
Ar 0.0 6 0.0 (n 5 5)

S. zuelzerae N2 202.9 6 3.0 (n 5 3) 2.3 6 0.3
Ar 100.1 6 4.0 (n 5 3)

ZAS-9 N2/CO2 168.6 6 19.8 (n 5 3) 1.2 6 0.2
Ar/CO2 104.3 6 13.8 (n 5 3)

ZAS-1 N2/CO2 38.4 6 2.2 (n 5 3) Trace*
Ar/CO2 38.1 6 1.4 (n 5 3)

ZAS-2 N2/CO2 58.7 6 3.1 (n 5 2) Trace*
Ar/CO2 57.1 6 4.0 (n 5 3)
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some spirochetal NifHs to environmental NifH
clones from zooplankton, cordgrass rhizosphere,
and Antarctic ice pools (Fig. 2), it is not unrea-
sonable to expect that some of the latter clones
will ultimately prove to be of spirochetal origin
and that the spirochete-specific contribution to
N2 fixation in such habitats will be substantial.
Hence, the discovery of N2 fixation in spiro-
chetes adds a new “twist” to our appreciation of
this important, uniquely prokaryote-mediated
process.
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