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ABSTRACT

Metagrowth is a new type of knowledge base
developed to guide the experimental studies of cul-
ture conditions of obligate parasitic bacteria. We
have gathered biological evidences giving possible
clues to the development of the axenic (i.e. ‘cell-
free’) growth of obligate parasites from various
sources including published literature, genomic
sequence information, metabolic databases and
transporter databases. The database entries are com-
posed of those evidences and specific hypotheses
derived from them. Currently, 200 entries are
available forRickettsia prowazekii,Rickettsia conorii,
Tropheryma whipplei, Treponema pallidum, Myco-
bacterium tuberculosis and Coxiella burnetii. The
web interface of Metagrowth helps users to design
new axenic culture media eventually suitable for
those bacteria. Metagrowth is accessible at http://
igs-server.cnrs-mrs.fr/axenic/.

INTRODUCTION

A number of bacteria resist axenic (i.e. ‘cell-free’) culture in
the laboratory. Those include obligate parasites causing serious
human diseases, such as Rickettsia (1,2) and Mycobacterium
leprae (3). They adapt to a limited environment that provides
appropriate physical conditions, nutriments and other factors
required for their replication and growth. Current culture sys-
tems of obligate parasitic bacteria depend on eukaryotic cells
(e.g. for Rickettsia) or even entire living animals (e.g. for
M.leprae). The lack of cell-free culture media poses a critical
problem in studying these bacteria. Without cell-free culture, it
is impossible to use modern experimental approaches (e.g.
transcriptomics, proteomics) that depend on non-contaminated
RNA or protein extractions. Thus, the establishments of axenic
culture media for those pathogens would have a significant
impact on the medical and biological research communities
working on these diseases. In a more fundamental way, this

type of study might help to unraveling various type of signals
involved in their host–parasite relationships.

With the recent development of metabolic databases (4,5),
genome-based metabolic reconstruction has become an effi-
cient approach to tackle this problem (6,7). By examining the
metabolic pathways predicted from genomic sequence ana-
lyses, one can generate testable hypotheses for the improve-
ment of bacterial culture conditions. We recently analyzed the
complete genome sequence of a human pathogen, Tropheryma
whipplei strain Twist, and identified significant deficiencies in
the biosynthesis of nine amino acids (8). Remarkably, this
knowledge effectively guided the development of the first
axenic culture medium to grow this fastidious microorganism
(7) that had been previously cultured only in association with a
fibroblast cell line (HEL) (9). We believe that this type of
approach should be generalized and could allow more obligate
parasitic bacteria to be grown in a cell-free culture medium.

It is clear that explicit hypotheses (e.g. ‘required nutri-
ments’) and supporting evidences (e.g. ‘deficiencies of the
de novo synthesis’) are determinants for this type of study.
However, such a biological knowledge is usually dispersed in
literature and various biological databases. Till date, no exist-
ing database exhaustively collects and systematically provides
biological knowledge about the cultivation of obligate para-
sites. This prompted us to gather evidences and hypotheses
that are relevant to the improvement of the culture conditions
of obligate parasites and make them available in a knowledge-
base named Metagrowth (http://igs-server.cnrs-mrs.fr/axenic/).
In this paper, we describe the source of the data accessible in
Metagrowth as well as its web interface guiding the user to
design new cell-free culture media of obligate parasites.

DATA IN METAGROWTH

Metagrowth is gathering ‘evidences’ and derived ‘hypotheses’
relevant to the improvement of the culture conditions of para-
sitic bacteria as follows:

Example 1. Evidence: ‘The genome does not encode
enzymes for the biosynthesis of compound X, but encodes a
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transporter for X’. ! Hypothesis: ‘Adding X may improve the
growth’.

Example 2. Evidence: ‘The genome encodes enzymes requir-
ing cofactor Y, but does not encode genes for the biosynthesis of
cofactor Y’. ! Hypothesis: ‘Adding Y may improve the
growth’.

These kinds of information are collected from the published
literature, genomic sequence databases (4), metabolic data-
bases (4,5,10,11) and transporter databases (12). Table 1
shows a tentative Metagrowth entry describing the supple-
mentation of S-adenosyl-L-methionine for the improvement of
Rickettsia culture conditions. The ‘Evidence’ and ‘Hypoth-
esis’ records are the two main components of the database
entry. The evidence record is a free text describing experi-
mentally validated facts or predicted metabolic features.
Associated hypotheses for the improvement of the culture
condition are stored in the hypothesis record. In the hypoth-
esis record, we currently describe the supplementation of
organic or inorganic compounds in the medium, or appropri-
ate physical conditions such as oxygen concentration. A pre-
fix ‘IN=’ in the hypothesis record designates a preferential
input (a compound or a physical condition) to the culture
medium that could be experimentally tested. Hyperlinks to
relevant genes, pathways and literature in the source

databases are provided to direct the users to the original
data. Currently, we have accumulated 220 Metagrowth entries
for 6 species of bacteria (5 genera): Rickettsia prowazekii and
Rickettsia conorii (agents of typhus and spotted fever, respec-
tively; 40 entries), T.whipplei (Whipple’s disease; 38 entries),
Treponema pallidum (13) (syphilis; 42 entries), M.leprae
(leprosy; 63 entries) and Coxiella burnetii (14) (Q-fever;
37 entries).

Rating of the reliability of collected scientific evidences is
an important issue in constructing a database of biological
hypotheses (15). In Metagrowth, the relationships between
evidences and hypotheses were classified into several cate-
gories. We refer to the relationships as ‘evidence types’ in
Metagrowth. The evidence types could be used for the prior-
itization of different hypotheses supported by different kinds
of evidences. We defined four major classes of evidence types.
Class I evidences describe the inability to synthesize a com-
pound, either by metabolic deficiencies or by general incap-
ability of biosynthesis (e.g. inorganic molecules such as metal
ions). Class II evidences refer to the importing capability of a
compound, either by active transporters or by passive mem-
brane permeability. Class III evidences refer to the require-
ment or utilization of a compound by the bacteria. Those
include cofactors required for known or predicted enzymatic
reactions in the cell, and basic building blocks of macromo-
lecules such as the 20 amino acids. Class IV evidences refer to
the other type of evidences, mostly experimentally validated
facts. Each class was further divided, leading to a total of 10
subclasses. The precise definitions of these evidence classes
and subclasses are provided in the Supplementary Material
(Table S1). The evidence subclasses are identified in the
hypothesis record of Metagrowth entries with a ‘ET=’ prefix
(Table 1). Figure 1 shows the current status of the number of
hypotheses supported by different types of evidences.

DESIGN OF A NEW CELL-FREE CULTURE MEDIUM

Browsing Metagrowth entries, users can easily obtain a list of
nutriment compounds and the corresponding list of evidences

Table 1. A Metagrowth entry

Entry E0435

Organism R.prowazekii (TAX:782 Bacteria; Proteobacteria;
Alphaproteobacteria; Rickettsiales; Rickettsiaceae;
Rickettsieae; Rickettsia; typhus group)
R.conorii (TAX:781 Bacteria; Proteobacteria;
Alphaproteobacteria; Rickettsiales; Rickettsiaceae;
Rickettsieae; Rickettsia; spotted fever group)

Evidence Presence of transporters for S-adenosylmethionine
(AdoMet) (24), and the lack (pseudogene status) of AdoMet
synthetase, MetK, in Rickettsia (25–27). AdoMet is an
important substrate for methyltransferase reaction in the cell.

Hypothesis IN = S-Adenosyl-L-methionine cpd:C00019, (ET = DT)
Gene RP076

RC0106

Class I: “Cannot-make evidence”
Metabolic deficiencies

Inorganic molecules not biosynthesized

Class II: “Can-up-take evidence”
Presence of transporters

Spontaneous membrane permeation

Class III: “Utilizing evidence”
Molecules generally utilized (e.g. amino acids)

Cofactors required for enzymes
Initial substrate molecules in metabolic pathways

Class IV:
“Other evidences”53

29

20 5425

89 36

79

- - --

Figure 1. Number of the hypotheses in Metagrowth supported by different classes of evidences.
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suggesting the supplementation of the medium by these com-
pounds. An important practical issue is the determination of
the concentrations of those supplemented molecules. To help
the users with this respect, Metagrowth proposes a range of
concentrations for different compounds. The ranges were
determined according to the roles of molecules in bacterial
cells and the concentrations of the molecules of the same role
in several reference culture media. As reference culture media,
we selected two complex culture media for fastidious (i.e.
‘difficult to grow’) bacteria: BSK-H medium designed to
support the growth of the Lyme disease spirochete Borrelia
burgdorferi (16), and TWH medium supporting the growth of
T.whipplei (7). The concentrations of the components in the
two media and the upper and lower limits of the concentrations
within each compound category are provided in the Supple-
mentary Material (Figure S1).

The users may specify one or more values within the sug-
gested range of concentration of each molecule. If the users
specify more than one concentration in the range, the combina-
tion of different concentrations for different molecules could
lead to a huge number of experiments even if the number of
molecules remains relatively small. The full combinatorial
testing of 20 different nutriments, at two concentrations
each, corresponds to 220� 106. Such a large number of screen-
ing experiments can be avoided by the use of the incomplete
factorial design approach. Incomplete factorial design is a
mathematical method to effectively reduce the number of
experiments required by a full combinatorial-screening of para-
meters (17). SAmBA is an implementation of the incomplete
factorial design, which has been extensively used for the deter-
mination of protein crystallization conditions (18), and more
recently for optimizing recombinant protein experiments (19).
Metagrowth outputs the list of molecules and their concentra-
tions in a format compatible with the SAmBA program (http://
igs-server.cnrs-mrs.fr/samba/). In the above example with
20 compounds, 40 representative experimental protocols are
proposed using SAmBA. In theory, the incomplete factorial
design provides a minimal set of experiments in which
the influence of each parameter can be examined rationally
by statistical methods such as a multiple linear regression
analysis.

FUTURE DIRECTIONS AND CONCLUSIONS

Many evidences in Metagrowth originate in metabolic ana-
lyses described in the literature such as whole genome sequen-
cing papers. They are usually based on the visual inspection of
predicted metabolic pathways. The use of in silico simulation
studies with more sophisticated mathematical metabolic
models (20–23) than those available in the current metabolic
databases (4,5) is clearly the next improvement in the genera-
tion of metabolic hypotheses. With these approaches, one may,
more precisely, examine Metagrowth evidences and derived
hypotheses such as ‘a metabolic pathway from X to Y lacks an
enzyme, thus the addition of Y in the medium may improve the
culture of bacteria’. In silico simulation studies may reveal an
alternative pathway to the metabolite Y bypassing the missing
reaction steps.

In the current Metagrowth, we only present predictions
for preferential inputs to the culture conditions (designated

by the ‘IN=’ prefix). We plan to incorporate other kinds of
information such as an ‘unnecessary’ or ‘toxic’ in association
with a compound. Compound nomenclature in Metagrowth is
based on LIGAND (10), in which hierarchical relationships
between individual and generic compound names are not well
treated. Standardization of the compound name in Metagrowth
will be required to facilitate data update and to automatically
detect data redundancies.

Genome sequence analysis and metabolic reconstruction of
T.whipplei led to the establishment of the first cell-free culture
medium allowing this fastidious bacteria to grow outside its
cellular host. Further improvement of the culture condition
using Metagrowth may lead to an even faster growth,
which would further facilitate the manipulation and study
of this microorganism. The development of an axenic culture
medium for other bacteria could be more challenging. For
M.leprae and T.pallidum, a large body of research has been
carried out to explore the possibility of axenic cultivation as
can be seen in Metagrowth. The study of bacterial culture
conditions offers new testable and valuable challenges for
the whole cell metabolic modeling and simulation studies.
It helps in improving genomic annotation by identifying defi-
cient or alternative metabolic pathways. It helps better char-
acterization of host–parasite relationships, eventually giving
us clues about new therapeutic targets. We hope to help the
scientific community working on those pathogens by provid-
ing comprehensive information about their culture conditions
through Metagrowth.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online. Table S1
gives the definition of the classes and the subclasses of the
relationships between evidences and hypotheses. Figure S1
gives the concentrations of the components in existing com-
plex culture medium.
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