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A thermolabile hemolysin from Leptospira interrogans serovar hardjo, strain Sponselee, was shown to
specifically degrade sphingomyelin. Nucleotide sequence determination revealed that sphingomyelinase activity
was encoded by an open reading frame of 1,668 nucleotides. Although a putative signal sequence could be
identified, no evidence for protein export in either L. interrogans or Escherichia coli was obtained. The
apparent molecular mass of the expression product in E. coli minicells was 41.2 kilodaltons, whereas open
reading frame 1 encoded a protein of 63,268 daltons. The observed difference may be explained by processing
at the carboxy-terminal part of the hemolysin in E. coli. A high degree of similarity on the DNA and protein
levels with Staphylococcus aureus ,-hemolysin and sphingomyelinase C from three Bacillus cereus strains was
observed. The presence of various sphingomyelinase genes within the L. interrogans species is demonstrated.

Leptospira interrogans is the etiologic agent of leptospiro-
sis, which is a worldwide zoonosis. The bacteria of this
species are divided into 19 serogroups and subdivided into
more than 180 serovars on the basis of a microscopic
agglutination test (23). Members of the serovar hardjo (be-
longing to the serogroup Sejroe) cause leptospirosis in dairy
cattle, resulting in serious economic losses due to agalactia
and abortion (11, 36). The infection can be transmitted by the
urine to humans, resulting in dairy fever, characterized by
headache, severe fever, meningitis, and icterus. In spite of
the medical and economical importance of leptospirosis,
very little is known about the virulence factors involved in
pathogenesis. Hemolysins are involved in the pathogenesis
of infections by Escherichia coli (16), Staphylococcus au-
reus (5), Listeria monocytogenes (7, 26), and Streptococcus
pneumoniae (4) and have been claimed to be important in
leptospiral infections (2, 35, 38, 39). Hemolysis by leptospi-
rae is caused by phospholipases (38); both phospholipase A
and sphingomyelinase C activities have been demonstrated
(3, 6). Whereas pathogenic L. interrogans and nonpatho-
genic Leptospira biflexa strains have phospholipase A activ-
ity, sphingomyelinase C activity has only been demonstrated
in strains of L. interrogans. A DNA fragment containing a
sphingomyelinase C gene has been cloned from a Dutch field
strain, causing bovine leptospirosis (10). In this study the
molecular properties of the gene and its expression product
are analyzed.

MATERIALS AND METHODS
Bacterial strains, plasmids, media, and transformation. L.

interrogans strains were obtained from the World Health
Organization/Food and Agricultural Organization Collabo-
rating Center for Reference and Research on Leptospirosis
at the Royal Tropical Institute in Amsterdam, The Nether-
lands, and were grown as described previously (10). Blue-
script SK M13+ (pBS) was used as plasmid cloning vehicle,
and all experiments with pBS, unless stated otherwise, were
performed with XL1-Blue (Stratagene, La Jolla, Calif.) as
the E. coli host strain. E. coli cells were grown in Luria-
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Bertani (LB) medium or on LB agar plates (28) containing
100 ,ug of ampicillin per ml. Competent E. coli cells were
prepared by the CaCI2 method (28). Plasmid pHL2-B3 has
been described previously (10). Plasmid pHL2-B4 contains
the same DNA fragment as pHL2-B3 in the opposite orien-
tation.

Production of mutants and sequence analysis. DNA from
clones pHL2-B3 and pHL2-B4 was digested with restric-
tion enzymes XbaI and SstI, and unidirectional deletion
mutants were produced by exonuclease III digestion with
the Erase-a-Base kit (Promega Biotec, Madison, Wis.).
Single-stranded DNA from these clones was prepared as
described by the manufacturers of pBS (Stratagene). Nucle-
otide sequences were determined by the dideoxy-chain
termination method of Sanger et al. (33). Nucleotide se-
quences were analyzed with the Beckman Microgenie (re-
lease 6.0; Beckman Instruments, Palo Alto, Calif.) and the
PC/Gene (release 6.0; Genofit S.A., Geneva, Switzerland)
computing programs.
The FASTA program, release 1.0, April 1988 (30), was

used to compare nucleotide and amino acid sequences with
the following data bases: EMBL (release 19.0), NBRF/PIR
(release 21.0), NBRF/NEW (release 39.0), Swiss-prot (re-
lease 11.0), and Brookhaven (July 1989). Similar sequences
were aligned by using the Clustal computer program (19, 20).
Hemolysin plate assay. Colonies of E. coli harboring

recombinant plasmids were streaked on plates containing
LB broth, 1% agar, 20% (vol/vol) fresh sheep erythrocytes
(washed twice in 0.9% NaCl), 25 mM MgCl2, and 100 ,g of
ampicillin per ml. Cells were grown for 18 h at 37°C, and
hemolytic zones appeared after an additional incubation of
24 h at room temperature. Omission of MgCl2 from the
agarplates resulted in much smaller hemolytic zones.

Phospholipase assay and analysis by thin-layer chromatog-
raphy. Sphingomyelinase activity was tested in a biphasic
system, essentially as described previously (24), consisting
of an ether-methanol (9:1, vol/vol) organic phase containing
2 mg of sphingomyelin isolated from bovine brain (Sigma
Chemical Co., St. Louis, Mo.) per ml and a water phase
containing 10 mM Tris hydrochloride (pH 7.4), 25 mM
MgCl2, and (sonicated) bacteria and/or culture medium. The
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FIG. 1. Nucleotide and derived amino acid sequences from the 3,987-bp BamHI insert in pHL2-B3. The putative signal sequence is boxed,
and -10 and -35 transcription signals and putative ribosome-binding sites (RBS) are underlined. Inverted repeats (IRs) are numbered and
overlined by arrows. Gibbs free energy differences were calculated by using the Microgenie program and are indicated in kilocalories (1 kcal
is equal to ca. 4.184 kJ) per mole: IR1, -9.6; IR2, -8.8; IR3, -9.6; IR4, -25.4; IR5, -10.8; IR6, -8.0. Sequences similar to the potential
regulatory sequence in L. biflexa (42) are overlined with a boldface bar. These data have been submitted to the EMBL Data Library under
accession no. X52176.

samples were vigorously shaken for 4 h at 37°C, and 2 ,lI of
the organic phase was applied on a silica gel-60-coated glass
plate (E. Merck AG, Darmstadt, Federal Republic of Ger-
many). When MgCl2 was omitted from the reaction mixture,
sphingomyelinase activity was much lower. The chromato-
gram was developed with a chloroform-methanol-water-
25% ammonia (58:35:3.5:3.5, vol/vol) mixture as the mobile
phase. (Phospho)lipids were visualized by spraying the
plates with 30% sulfuric acid, followed by heating at 110°C
for 5 min. Purified sphingomyelinase C (0.08 U) from S.
aureus (Sigma) was used as a positive control. Sonicated E.
coli cells containing pBS were used as a negative control.
Degradation of other phospholipids was performed as de-
scribed above, chromatograms were developed with mobile-
phase mixtures as previously described (24, 25), and reaction
products were visualized as described above. Degradation of
L-a-lysophosphatidylcholin (egg yolk; Sigma), L-a-phospha-
tidylethanolamine (bovine brain; U.S. Biochemical Corp.,
Cleveland, Ohio), phosphatidyl-L-serine (bovine brain; U.S.
Biochemical), L-a-phosphatidic acid (egg yolk; U.S. Bio-
chemical), and L-a-lecithin (U.S. Biochemical) as substrates
was tested.

RESULTS

Nucleotide sequence analysis. The nucleotide sequence of a
cloned 3,987-base-pair (bp) BamHI DNA fragment, which
was shown to code for sphingomyelinase activity (10), was
determined (Fig. 1; data submitted to EMBL Data Library
under accession no. X52176). For this purpose, a number of
deletion clones (Fig. 2C) were produced. After translation of
the nucleotide sequence, three open reading frames (ORFs)
were identified (Fig. 2A). The percentage of G+C in the
whole fragment (35.9%) as well as in the individual ORFs
(Fig. 2A) was within the range of 34.1 to 39.1%, which
corresponds to the known G+C percentage ofgenomic DNA
from L. interrogans (23) and from L. interrogans serovar
hardjo strains (27).
Upstream of ORFi and ORF2, putative -10 and -35

transcription and Shine-Dalgarno translation-initiation se-
quences similar to those in E. coli were identified. In ORF2
a second putative translation initiation site was identified at
bp 3264 (Fig. 1). Sequences upstream of ORFi and ORF2
and the internal transcription initiation site in ORF2 were
similar to the previously reported potential regulatory se-
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FIG. 1-Continued

quence TCAAAAT/CGAAT, found upstream of L. biflexa
trpE and trpG genes (42) (Fig. 1). In ORFi and ORF2 this
sequence was closer to the putative translation initiation site
than was found with the trp genes. Inverted repeats that
could function as rho-independent transcription termination
signals were located directly downstream of ORFi and
ORF3. The first inverted repeat downstream of ORF2 was
after 80 bp. The initiation methionine codon and the regula-
tory sequences of ORF3 were not located on clone pHL2-
B3. Therefore we only sequenced the coding region for the
carboxy-terminal part of the protein.

Localization of region encoding hemolytic and sphingomy-
elinase activity. A number of deletion mutants (Fig. 2C) were
tested for hemolytic activity in blood agar plates and for
sphingomyelinase C activity (Fig. 3). In all clones tested in
both assays, the presence of sphingomyelinase activity co-
incided with the presence of hemolytic activity. In both
experiments, pHL2-B4-51 was the clone with the smallest
DNA insert, still expressing hemolytic and sphingomyeli-
nase C activities at the same level as clones pHL2-B3 and
pHL2-B4. E. coli containing recombinant pHL2-B4-53, cod-
ing for 45.6 kilodaltons (kDa) of the amino-terminal part of
the protein, lost both enzymatic activities. Recombinant
pHL2-B4-06 contained the coding region of ORFi except for
the last 10 amino acids; E. coli cells harboring this recombi-
nant still contained both enzymatic activities, but at lower
levels (data not shown). Therefore the whole coding region
of ORFi is required for full expression of hemolytic and
sphingomyelinase activities in E. coli. Since E. coli contain-

ing pHL2-B3-05 was not hemolytic and had no sphingomy-
elinase activity, expression also required the presence of at
least a portion of the 580-bp noncoding DNA region up-
stream of ORF1. A DNA sequence controlling the expres-
sion of sphingomyelinase activity may be located on this
DNA region.
Temperature sensitivity and substrate specificity. Sphingo-

myelinase activity in lysates from E. coli cultures harboring
pHL2-B3 and L. interrogans Sponselee cultures was de-
stroyed by heating the samples for 10 min at 56°C. Lysates
from clone pHL2-B3 were also tested for the ability to
degrade L-a-lysophosphatidylcholin, L-x-phosphatidyletha-
nolamine, phosphatidyl-L-serine, L-a-phosphatidic acid, and
L-a-lecithin, but no activity was detected.

Protein sequence analysis and homology with other sphin-
gomyelinases. At the amino terminus of ORF1, the first 27
amino acids have the consensus of a procaryotic signal
sequence (40): a basic amino-terminal region, central hydro-
phobic region, and a polar carboxy-terminal region. The
cleavage site of signal peptides is always preceded by a small
amino acid residue at the -1 position and a small uncharged
amino acid residue at the -3 position (40). Therefore,
cleavage is most likely to occur after the alanine residue at
position 27.
Comparison of nucleotide and amino acid sequences of

ORF1 with those in data bases revealed homology with a
,-hemolysin from S. aureus (32) and three sphingomyeli-
nases from different B. cereus strains (14, 22, 41) on both the
DNA level (data not shown) and the protein level (Fig. 4).
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FIG. 2. Restriction map of pHL2-B3 and sequence strategy. (A) Properties of the three ORFs deduced from the nucleotide sequence
analysis. The hatched bar indicates a putative signal peptide. (B) Restriction map of the 3,987-bp BamHI insert in pHL2-B3 (pHL2-B4
contains the same insert in the opposite orientation) (B, BamHI; C, ClaI; E, EcoRI; H, HindIII; P, PvuI). (C) Deletion clones generated by
exonuclease III digestion and used for nucleotide sequence analysis and localization of hemolytic and sphingomyelinase activity. Arrows
pointing to the right indicate clones derived from pHL2-B3; the 3,987-bp BamHI insert was digested by exonuclease III exclusively from the
side of bp 1, and the remaining insert DNA extends from the base of the arrow up to bp 3987. Arrows pointing to the left are derived from
pHL2-B4; the 3,987-bp BamHI insert was digested by exonuclease III exclusively from the side of bp 3987, and the remaining insert DNA
extends from the base of the arrow up to bp 1. The length of the arrow represents the part of which the nucleotide sequence was determined.
Deletion clones are named after the clone from which they were derived (i.e., pHL2-B3 or pHL2-B4), followed by the number indicated
above. A number of clones were tested for hemolytic activity; boldface and broken-line arrows indicate the presence and absence of hemolytic
activity, respectively. The other arrows indicate clones that were not tested.

Both on the DNA and protein levels, the similarity was
present in the middle part of the gene and protein, respec-
tively. The amino termini differed considerably, and the
carboxy termini could not be aligned because of the differ-
ence in molecular weight. No sequences homologous to
ORF2 or ORF3 were detected during the homology
searches.
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FIG. 3. Assay of sphingomyelinase activity of various recombi-
nant DNA clones to localize the region on pHL2-B3 encoding
enzyme activity. Sonicated E. coli cells containing the plasmids
indicated at the top were tested for sphingomyelinase activity; the
reaction products were analyzed by thin-layer chromatography.
Purified sphingomyelinase C from S. aureus and E. coli containing
the pBS vector were used as positive and negative controls, respec-
tively. The sphingomyelin substrate and ceramide degradation prod-
ucts are indicated on the left by SP and C, respectively.

Codon usage. The codons used in L. interrogans for the
expression of the ORFs of pHL2-B3 are shown in Table 1
and compared with the codon usage in L. biflexa trpE and
trpG genes (42), E. coli (average values for 407 genes
calculated from the data from Aota et al. [1]), S. aureus
,-hemolysin (32), and B. cereus sphingomyelinase C genes
(average values compiled from three published sequences
[14, 22, 41]). Codon usage in the L. interrogans genes was
quite different from the codon usage in E. coli genes for the
amino acids arginine, asparagine, cysteine, glutamine, gly-
cine, proline, and leucine. The codon usage was more similar
to that of L. biflexa, although there were differences for
asparagine, arginine, isoleucine, and proline. Comparison of
the codon usage in the different sphingomyelinase genes
revealed the frequent use of the arginine codon AGA and the
proline codon CCC in the leptospiral sphingomyelinase
gene, whereas these codons were hardly or not at all used in
the other four genes. The frequencies of bases in the third
position of a codon were calculated and were similar to what
has been shown for L. biflexa (42), reflecting the overall base
composition of the organism.

Sphingomyelinase activities of different Leptospira strains.
Total culture, pellet, and supernatant fractions of four L.
interrogans strains belonging to different serogroups were
compared for the ability to degrade sphingomyelin (Fig. 5).
The results indicated that all four strains contained sphingo-
myelinase activity. In strains Sponselee and Mus 127, sphin-
gomyelinase activity was associated with the cellular frac-
tion, whereas the sphingomyelinase activity from strains
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BC SE1 IPSYTGHTATWDATTNSIAKYNFPDSPAEYLDYIIASKDHANPSFIENKVLQP-KSPQWT
BC IAM1208 VPSYTGHTATWDATTNSIAKYNFPDSPAEYLDYIIASKDHANPSYIENKVLQP-KSPQWT
BC GP4 VPSYTGHTATWDATTNSIAKYNFPDSLAEYLDYIIASKDHANPSYIENKVLQP-KSPQWT

*.* ***. .**-* . ****..-- *
370 380 390 400 410 420

LI AKG----YTSDEFSDHYPVYGFIYADSSTPTKSGRKRKYDRVSFVSVATGKKIQANSEKS
SA VYAFPYYYVYNDF DHYPIKAYSP-------------------------------------
BC SE1 VTSWLKKYTYDDYDHYPVAATIT-------------------------------------
BC IAM1208 VTSWFQKYTYNDY SDDYPVEATI-------------------------------------
BC GP4 VTSWF RNIRIMITLIIIQVEATI-------------------------------------

LI
SA
BC SE1
BC IAM1208
BC GP4

LI
SA
BC SE1
BC IAM1208
BC GP4

LI
SA
BC SE1
BC IAM1208
BC GP4

430 440 450 460 470 480
NAWLKVNATTETDLTKFNLVQTNDPDSNPSCMKSGHVRIESSHSLNYFWNWWLGGGKGNY-_______K-------------
-------------------------------SMK--------------------------------------------------------.SNK.--______________________

490 500 510 520 530 540
AYYPKFNDGSNRIQIINLDGGCLQDGSRVAFKDYDTISRRQYFLTVWEGGNWDKYLYLWR

550 560
SHIGLREIFYLKLDSSPEMNWSKKLIYR

FIG. 4. Alignment of the amino acid sequences from sphingomyelinases from L. interrogans (LI) Sponselee (this work), S. aureus
1-hemolysin (SA) (32), and B. cereus (BC) SEI (22), IAM1208 (41), and GP4 (14). Identical residues are marked with an asterisk, and
conservative mutations are marked with a dot, according to the log-odds amino acid similarity matrix of Dayhoff (9). Strokes indicate a gap
introduced into the sequence for alignment purposes.

Pomona and Hond Utrecht IV seemed to be secreted. When
sonication was omitted, the cellular fraction of strain Spon-
selee still had sphingomyelinase activity (data not shown but
identical to those in Fig. 5). Therefore the enzyme is
probably located in the outer envelope. No sphingomyeli-
nase activity could be demonstrated in strains Wijnberg and
M20 (belonging to serogroup Icterohaemorrhagiae) and the
apathogenic Patocl strain (L. biflexa).

DISCUSSION

The nucleotide sequence analysis of a 3,987-bp DNA
fragment of L. interrogans, encoding sphingomyelinase,
revealed the presence of three ORFs. These are the first L.
interrogans protein-encoding genes for which the nucleotide
sequence has been determined. The molecular mass of the
product of ORF1 (63,268 Da), corresponds to the apparent

molecular mass of 64 kDa from a hemolysin cloned from L.
interrogans serovar pomona (8; A. A. Dain, M. N. Rozinov,
and Y. G. Chernukha, VI Joint Meeting of Leptospira
Workers, abstr. no. 7.7, 1988). It has previously been shown
that from the DNA insert of pHL2-B3, only one smaller
protein of 39.2 kDa (41.6 kDa, including the 2.4-kDa signal
peptide) is expressed in E. coli (10). Indeed, ORF1 has a
putative signal peptide with a calculated molecular mass of
3,175 Da. Moreover, ORF1 is the only reading frame large
enough to encode such a protein and has been shown here to
code for hemolysin and sphingomyelinase activities. We
therefore conclude that the 39.2-kDa protein is the mature
expression product of ORF1 in E. coli minicells and proba-
bly has sphingomyelinase activity. However, we cannot
exclude the possibility that sphingomyelinase activity is
expressed as a larger, short-lived protein, and that the
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TABLE 1. Codon usage in L. interrogans, L. biflexa, E. coli, S. aureus, and B. cereusa

Frequency of codon usage (%) in:

Amino acid Codon L. interrogans
L. biflexa E. coli S. aureus B. cereus

ORF1 ORF2 ORF3

Ala
Ala
Ala
Ala

Arg
Arg
Arg
Arg
Arg
Arg

Asn
Asn

Asp
Asp

Cys
Cys

Gln
Gln

Glu
Glu

Gly
Gly
Gly
Gly

His
His

Ile
Ile
Ile

Leu
Leu
Leu
Leu
Leu
Leu

GCT
GCC
GCA
GCG

CGT
CGC
CGA
CGG
AGA
AGG

AAT
AAC

GAT
GAC

TGT
TGC

CAA
CAG

GAA
GAG

GGT
GGC
GGA
GGG

CAT
CAC

ATT
ATC
ATA

TTA
TTG
CTT
CTC
CTA
CTG

Lys
Lys

Met

Phe
Phe

Pro
Pro
Pro
Pro

Ser
Ser
Ser
Ser
Ser
Ser

8 (28)
4 (13)
9 (31)
8 (28)

4 (16)
0 (0)
3 (12)
1 (4)

13 (52)
4 (16)

20 (51)
19 (49)

32 (86)
5 (14)

7 (88)
1 (12)

15 (83)
3 (17)

15 (75)
5 (25)

10 (25)
4 (10)
22 (55)
4 (10)

7 (70)
3 (30)

16 (40)
18 (45)
6 (15)

10 (24)
10 (24)
8 (20)
6 (15)
4 (10)
3 (7)

AAA
AAG

ATG

TTT
TTC

CCT
CCC
CCA
CCG

TCT
TCC
TCA
TCG
AGT
AGC

35 (80)
9 (20)

6 (100)

16 (64)
9 (36)

4 (20)
8 (40)
3 (15)
5 (25)

15 (33)
11 (24)
6 (13)
4 (9)
8 (17)
2 (4)

1 (50)
0 (0)
0 (0)
1 (50)

1 (13)
2 (25)
1 (13)
1 (13)
3 (37)
0 (0)

13 (62)
8 (38)

7 (58)
5 (42)

1 (50)
1 (50)

8 (100)
0 (0)

18 (78)
5 (22)

1 (4)
6 (25)
14 (58)
3 (13)

3 (75)
1 (25)

13 (48)
9 (33)
5 (19)

7 (22)
6 (19)
8 (25)
2 (6)
5 (16)
4 (12)

19 (83)
4 (17)

6 (100)

18 (78)
5 (22)

3 (33)
0 (0)
0 (0)
6 (67)

9 (38)
5 (21)
3 (13)
1 (4)
3 (12)
3 (12)

1 (25)
0 (0)
3 (75)
0 (0)

1 (20)
0 (0)
1 (20)
1 (20)
2 (40)
0 (0)

13 (76)
4 (24)

5 (71)
2 (29)

0 (0)
0 (0)

14 (93)
1 (7)

19 (76)
6 (24)

1 (13)
0 (0)
6 (74)
1 (13)

1 (100)
0 (0)

5 (28)
3 (33)
7 (39)

2 (10)
9 (43)
3 (14)
3 (14)
4 (29)
0 (0)

20 (83)
4 (17)

1 (100)

3 (75)
1 (25)

3 (50)
1 (17)
0 (0)
2 (33)

5 (20)
1 (5)
3 (15)
6 (30)
2 (10)
3 (15)

16 (45)
3 (9)
10 (29)
6 (17)

7 (25)
2 (7)
10 (36)
2 (7)
5 (18)
2 (7)

24 (89)
2 (11)

24 (83)
5 (17)

3 (60)
2 (40)

19 (90)
2 (10)

49 (86)
8 (14)

20 (32)
2 (3)

31 (50)
9 (15)

12 (75)
4 (25)

32 (64)
12 (24)
6 (12)

18 (29)
14 (22)
17 (28)
9 (13)
5 (8)
0 (0)

39 (81)
9 (19)

15 (100)

32 (84)
6 (16)

11 (31)
8 (22)

13 (36)
4 (11)

13 (28)
7 (14)
8 (16)
9 (18)
11 (22)
1 (2)

(20)
(23)
(22)
(35)

(59)
(37)
(4)
(6)
(2)
(2)

(37)
(63)

(57)
(43)

(42)
(58)

(30)
(70)

(71)
(29)

(41)
(41)
(7)

(11)

(49)
(51)

(44)
(51)
(5)

(10)
(11)
(9)
(9)
(3)

(58)

(76)
(24)

(100)

(47)
(53)

(14)
(8)

(18)
(60)

(21)
(18)
(10)
(13)
(11)
(27)

3 (18)
3 (18)
8 (46)
3 (18)

2 (40)
1 (20)
1 (20)
0 (0)
1 (20)
0 (0)

21 (81)
5 (19)

19 (73)
7 (27)

2 (100)
0 (0)

9 (90)
1 (10)

13 (87)
2 (13)

11 (52)
5 (24)
3 (14)
2 (10)

8 (89)
1 (11)

5 (33)
6 (40)
4 (27)

11 (52)
3 (14)
4 (19)
1 (5)
2 (10)
0 (0)

36 (88)
5 (12)

4 (100)

5 (50)
5 (50)

7 (50)
0 (0)
7 (50)
0 (0)

5 (19)
1 (4)
9 (35)
1 (4)
6 (23)
4 (15)

14 (21)
4 (6)
37 (54)
13 (19)

16 (100)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)

63 (70)
27 (30)

57 (92)
5 (8)

1 (17)
5 (83)

27 (75)
9 (25)

25 (60)
17 (40)

22 (33)
5 (7)

27 (40)
13 (20)

13 (76)
4 (24)

37 (62)
7 (12)
16 (26)

43 (61)
14 (20)
3 (6)
1 (1)
8 (11)
1 (1)

61 (74)
21 (26)

19 (100)

17 (63)
10 (37)

9 (23)
0 (0)

25 (62)
6 (15)

25 (28)
1 (1)

25 (28)
6 (7)

20 (22)
13 (14)

Continued on following page
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TABLE 1-Continued

Frequency of codon usage (%) in:

Amino acid Codon L. interrogans
L. biflexa E. coli S. aureus B. cereus

ORF1 ORF2 ORF3

Thr ACT 9 (32) 7 (35) 3 (25) 5 (25) (21) 6 (38) 23 (34)
Thr ACC 4 (14) 3 (15) 4 (33) 5 (25) (46) 1 (6) 0 (0)
Thr ACA 5 (18) 3 (15) 2 (17) 7 (35) (10) 8 (50) 24 (35)
Thr ACG 10 (36) 7 (35) 3 (25) 3 (15) (22) 1 (6) 21 (31)

Trp TGG 15 (100) 5 (100) 1 (100) 2 (100) (100) 4 (100) 18 (100)

Tyr TAT 20 (67) 9 (64) 3 (75) 15 (60) (50) 15 (71) 45 (87)
Tyr TAC 10 (33) 5 (36) 1 (25) 10 (40) (50) 6 (29) 7 (13)

Val GTT 11 (31) 4 (25) 0 (0) 12 (31) (31) 14 (52) 19 (28)
Val GTC 6 (17) 5 (31) 1 (33) 4 (11) (18) 3 (11) 1 (2)
Val GTA 9 (26) 5 (31) 1 (33) 13 (33) (18) 7 (26) 26 (38)
Val GTG 9 (26) 2 (13) 1 (33) 10 (25) (33) 3 (11) 22 (32)

a Codons used in the three ORFs of L. interrogans were compared with those of L. biflexa trpE and trpG genes (41), E. coli (average values for 407 genes
calculated from the data from Aota et al. [1]), S. aureus 3-hemolysin (32), and B. cereus sphingomyelinase C genes (average values compiled from three published
sequences [14, 22, 41]). The frequency of codon usage is indicated, followed by a percentage, representing the number of times this codon is used to encode its
amino acid.

39.2-kDa protein, generated by degradation or processing,
has no enzymatic activity. The molecular mass of 39.2 kDa
is comparable to the observed molecular mass of the four
homologous sphingomyelinases and corresponds very well
to the calculated molecular mass of 38,660 Da of the N-
terminal part of the protein, starting after the signal se-
quence, up to the point where homology with the other
sphingomyelinases ends (Fig. 4). How do we explain the
discrepancy between the size of ORF1 and the experimen-
tally detected product? Inverted repeats IR2 and IR3, which
could be involved in transcription or translation termination,
are located immediately downstream of the DNA region
coding for this part of the protein (Fig. 1). Premature
transcription or translation termination, however, is unlikely
to occur, since the whole coding region of ORF1 is needed
for optimal sphingomyelinase activity in E. coli. More likely,
the 39.2-kDa protein would be the result of posttranslational
processing of the complete 63-kDa expression product of
ORF1. Since in E. coli minicells processing occurs before
cleavage of the amino-terminal signal sequence, the former
processing can only take place at the carboxy terminus of the
protein (10). This is supported by the homology data pre-
sented in Fig. 4. Similar posttranslational processing at the
carboxy terminus of a protein has previously been reported
for the immunoglobulin A protease from Neisseria gonor-
rhoeae (31), serine protease from Serratia marcescens (29),
and activation of aerolysin from Aeromonas hydrophila (21).
The codon usage in the L. interrogans sphingomyelinase

gene is quite different from what is normally observed in E.
coli for genes with an average expression level. Since the
expression rate of genes in E. coli is known to be related to
their codon usage (15, 34), the leptospiral genes will proba-
bly have a low level of expression in E. coli. Indeed, no
difference could be detected between Coomassie-stained
polyacrylamide gels containing lysates from E. coli contain-
ing pBS or pHL2-B3 (data not shown). Alternatively, the
low expression level of the enzyme could be the result of
weak promoter activity. On both the DNA and protein
levels, the middle part of the leptospiral sphingomyelinase
shares a high degree of similarity with sphingomyelinases
from the distantly related bacteria S. aureus and B. cereus.
Obviously this part is important for enzyme activity. The

differences in the amino termini of the proteins could reflect
differences in transport, since B. cereus and S. aureus
sphingomyelinase are extracellular enzymes, whereas the
sphingomyelinase C activity of L. interrogans Sponselee
seems to be cell bound. ORF2 and ORF3 are not necessary
for sphingomyelinase activity (Fig. 3); no similar nucleotide
or amino acid sequences were found in the data banks, and
the functions of the proteins encoded by ORF2 and ORF3
remain unknown. Unlike the case in B. cereus GP-4 and
IAM1208 (14, 41), in which a phospholipase C gene is located
directly downstream of the sphingomyelinase C gene, no
such gene was found downstream of the leptospiral sphin-
gomyelinase gene. Since it has previously been shown that
five different clones, containing over 10 kilobases of genomic

SEROVAR: ballum canicola pomona hardjo

STRAIN: Mus 127 Hond Utrecht IV Pomona Sponselee :

PS T PS T P1S TP'S T n

C - - * * * *

SP - d d
99 9 I I 1.

FIG. 5. Sphingomyelinase activity of four different L. interro-
gans strains. Bacterial cultures were harvested in the logarithmic
growth phase, and a total (T) culture sample was separated into
pellet (P) and supernatant (S) fractions by centrifugation for 10 min
at 6,000 x g. After mild sonication, the samples were tested for their
ability to degrade sphingomyelin, which was monitored by thin-
layer chromatography. The sphingomyelin substrate and ceramide
degradation products are indicated on the left by SP and C,
respectively. Purified sphingomyelinase C from S. aureus and E.
coli containing the pBS vector were used as positive and negative
controls, respectively. The following L. interrogans strains were
tested; Sponselee (serogroup Sejroe, serovar hardjo); Mus127 (sero-
group Ballum, serovar ballum); Hond Utrecht IV (serogroup Cani-
cola, serovar canicola); Pomona (serogroup Pomona, serovar
pomona).
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DNA on which the sphingomyelinase gene is located, were
negative in a phospholipase C assay (10), it is unlikely that
such a gene is located nearby on the L. interrogans genome.
Among strains of L. interrogans, various sphingomyeli-

nases are produced. Strain Mus127 (serovar ballum) seems
to contain a gene similar to that present in pHL2-B3 (10).
Strains Hond Utrecht IV and Pomona, however, which do
not cross-hybridize with the sphingomyelinase gene from
strain Sponselee under stringent conditions (10), do degrade
sphingomyelin. Moreover, the sphingomyelinase activities
of strains Hond Utrecht IV and Pomona are predominantly
found in the supernatant, whereas those of strain Sponselee
and Mus127 are cell associated. Possibly, the sphingomyeli-
nase is a contact hemolysin in strains Mus127 and Sponselee
and an excreted hemolysin in strains Pomona and Hond
Utrecht IV. Strains belonging to the pomona and ballum
serovars were also reported to have different hemolytic
properties (37). Bovine erythrocytes are preferentially lysed
by pomona strains, and hamster erythrocytes are preferen-
tially lysed by ballum strains. It is not known whether this
difference is caused by a difference in substrate specificity of
the sphingomyelinase. Contrary to the Dutch field strain
Sponselee, L. interrogans strains of the serovar hardjo,
isolated in New Zealand, do not lyse ovine erythrocytes (18).
Therefore genetic variation seems to occur within the sero-
var hardjo. This is supported by the presence of different
genotypes within the serovar hardjo, based on DNA restric-
tion endonuclease analysis (12), and differences in the G+C
percentage of the genomic DNA (27). Although the presence
of multiple sphingomyelinase genes within the L. interro-
gans species indicates the importance of this enzyme for the
bacterium, the involvement of the sphingomyelinase in
pathogenesis is not known. However, several speculations
can be made. The homologous P-hemolysin from S. aureus
significantly increases recovery of bacteria from experimen-
tally infected mice, compared with that of the 3-hemolysin-
negative mutant, and therefore contributes to virulence in
vivo (5). Second, leptospires cannot grow without iron (13)
and use free fatty acids as the main carbon and energy
source (23). The sphingomyelinase could therefore play a
role in obtaining iron and fatty acids from lysed erythro-
cytes. Third, sphingomyelinase may be an important factor
in pathogenesis without lysing erythrocytes; sphingolipids
like sphingomyelin and their degradation products affect
many pharmalogical responses, growth factor action, recep-
tor functions, and phorbolester-induced responses and have
been implicated as second messengers (17).
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